{"title":"Castor is a temporal transcription factor that specifies early born central complex neuron identity.","authors":"Noah R Dillon, Chris Q Doe","doi":"10.1242/dev.204318","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of neuronal diversity is important for brain function, but how diversity is generated is incompletely understood. We used the development of the Drosophila central complex (CX) to address this question. The CX develops from eight bilateral Type 2 neuroblasts (T2NBs), which generate hundreds of different neuronal types. T2NBs express broad opposing temporal gradients of RNA-binding proteins. It remains unknown whether these protein gradients are sufficient to directly generate all known neuronal diversity, or whether there are temporal transcription factors (TTFs) with narrow expression windows that each specify a small subset of CX neuron identities. Multiple candidate TTFs have been identified, but their function remains uncharacterized. Here, we show that: (1) the adult E-PG neurons are born from early larval T2NBs; (2) the candidate TTF Castor is expressed transiently in early larval T2NBs when E-PG and P-EN neurons are born; and (3) Castor is required to specify early born E-PG and P-EN neuron identities. We conclude that Castor is a TTF in larval T2NB lineages that specifies multiple, early born CX neuron identities.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204318","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of neuronal diversity is important for brain function, but how diversity is generated is incompletely understood. We used the development of the Drosophila central complex (CX) to address this question. The CX develops from eight bilateral Type 2 neuroblasts (T2NBs), which generate hundreds of different neuronal types. T2NBs express broad opposing temporal gradients of RNA-binding proteins. It remains unknown whether these protein gradients are sufficient to directly generate all known neuronal diversity, or whether there are temporal transcription factors (TTFs) with narrow expression windows that each specify a small subset of CX neuron identities. Multiple candidate TTFs have been identified, but their function remains uncharacterized. Here, we show that: (1) the adult E-PG neurons are born from early larval T2NBs; (2) the candidate TTF Castor is expressed transiently in early larval T2NBs when E-PG and P-EN neurons are born; and (3) Castor is required to specify early born E-PG and P-EN neuron identities. We conclude that Castor is a TTF in larval T2NB lineages that specifies multiple, early born CX neuron identities.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.