Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection.

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.3762/bjnano.15.120
Thi Kim Ngan Nguyen, Tien Dat Doan, Huy Hieu Luu, Hoang Anh Nguyen, Thi Thu Ha Vu, Quang Hai Tran, Ha Tran Nguyen, Thanh Binh Dang, Thi Hai Yen Pham, Mai Ha Hoang
{"title":"Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection.","authors":"Thi Kim Ngan Nguyen, Tien Dat Doan, Huy Hieu Luu, Hoang Anh Nguyen, Thi Thu Ha Vu, Quang Hai Tran, Ha Tran Nguyen, Thanh Binh Dang, Thi Hai Yen Pham, Mai Ha Hoang","doi":"10.3762/bjnano.15.120","DOIUrl":null,"url":null,"abstract":"<p><p>A novel electrochemical sensor for the detection of enrofloxacin (ENR) in aqueous solutions has been developed using a carbon paste electrode modified with a mixture of metal-organic frameworks (MOFs) of CuBTC and FeBTC. These MOFs were successfully synthesized via a solvothermal method and characterized using various techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and X-ray photoelectron spectroscopy. The MOF mixture exhibited a particle size ranging from 40 to 100 nm, a high surface area of 1147 m<sup>2</sup>/g, a pore volume of 0.544 cm<sup>3</sup>/g, and a capillary diameter of 1.50 nm. Additionally, energy-dispersive X-ray mapping demonstrated the uniform distribution of the two MOFs within the electrode composition. The synergistic effect of the electrocatalytic properties of CuBTC and the high conductivity of FeBTC significantly enhanced the electrochemical response of ENR, increasing the signal by more than ten times compared to the unmodified electrode. Under optimal analytical conditions, the sensor exhibited three dynamic ranges for ENR detection, that is, 0.005 to 0.100 µM, 0.1 to 1.0 µM, and 1 to 13 µM, with coefficients of determination of 0.9990, 0.9954, and 0.9992, respectively, depending on the accumulation duration. The sensor achieved a low detection limit of 3 nM and demonstrated good reproducibility, with a relative standard deviation of 3.83%. Furthermore, the sensor demonstrated effective performance in analysing tap and lake water samples, with recovery rates ranging from 90.2% to 121.3%.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1522-1535"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610485/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.120","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel electrochemical sensor for the detection of enrofloxacin (ENR) in aqueous solutions has been developed using a carbon paste electrode modified with a mixture of metal-organic frameworks (MOFs) of CuBTC and FeBTC. These MOFs were successfully synthesized via a solvothermal method and characterized using various techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and X-ray photoelectron spectroscopy. The MOF mixture exhibited a particle size ranging from 40 to 100 nm, a high surface area of 1147 m2/g, a pore volume of 0.544 cm3/g, and a capillary diameter of 1.50 nm. Additionally, energy-dispersive X-ray mapping demonstrated the uniform distribution of the two MOFs within the electrode composition. The synergistic effect of the electrocatalytic properties of CuBTC and the high conductivity of FeBTC significantly enhanced the electrochemical response of ENR, increasing the signal by more than ten times compared to the unmodified electrode. Under optimal analytical conditions, the sensor exhibited three dynamic ranges for ENR detection, that is, 0.005 to 0.100 µM, 0.1 to 1.0 µM, and 1 to 13 µM, with coefficients of determination of 0.9990, 0.9954, and 0.9992, respectively, depending on the accumulation duration. The sensor achieved a low detection limit of 3 nM and demonstrated good reproducibility, with a relative standard deviation of 3.83%. Furthermore, the sensor demonstrated effective performance in analysing tap and lake water samples, with recovery rates ranging from 90.2% to 121.3%.

电化学纳米结构CuBTC/FeBTC MOF复合传感器检测恩诺沙星。
采用CuBTC和FeBTC的混合金属有机骨架(mfs)修饰碳糊电极,研制了一种用于检测水溶液中恩诺沙星(ENR)的新型电化学传感器。这些mof通过溶剂热法成功合成,并使用各种技术进行了表征,包括x射线衍射、傅里叶变换红外光谱、布鲁诺尔-埃米特-泰勒分析和x射线光电子能谱。MOF混合物的粒径为40 ~ 100 nm,比表面积为1147 m2/g,孔体积为0.544 cm3/g,毛细直径为1.50 nm。此外,能量色散x射线映射显示了两种mof在电极组成中的均匀分布。CuBTC的电催化性能和FeBTC的高电导率的协同作用显著增强了ENR的电化学响应,与未修饰的电极相比,信号提高了十倍以上。在最佳分析条件下,传感器的ENR检测动态范围分别为0.005 ~ 0.100µM、0.1 ~ 1.0µM和1 ~ 13µM,根据累积时间的不同,其测定系数分别为0.9990、0.9954和0.9992。该传感器的检测限低至3 nM,重现性好,相对标准偏差为3.83%。此外,该传感器在自来水和湖泊样品分析中表现出有效的性能,回收率为90.2%至121.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信