{"title":"Older is order: entropy reduction in cortical spontaneous activity marks healthy aging.","authors":"Da Chang, Xiu Wang, Yaojing Chen, Zhuo Rachel Han, Yin Wang, Bing Liu, Zhanjun Zhang, Xi-Nian Zuo","doi":"10.1186/s12868-024-00916-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of longitudinal neuroimaging resource.</p><p><strong>Results: </strong>We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy reductions were also evident for large-scale cortical networks, although with different rates of reduction for different networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order association networks.</p><p><strong>Conclusions: </strong>Our study confirmed that cortical entropy decreases continually in the aging process, both globally and regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of the complexity hierarchy and the diversity of complexity strengthen.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"25 1","pages":"74"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-024-00916-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of longitudinal neuroimaging resource.
Results: We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy reductions were also evident for large-scale cortical networks, although with different rates of reduction for different networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order association networks.
Conclusions: Our study confirmed that cortical entropy decreases continually in the aging process, both globally and regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of the complexity hierarchy and the diversity of complexity strengthen.
期刊介绍:
BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.