Older is order: entropy reduction in cortical spontaneous activity marks healthy aging.

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Da Chang, Xiu Wang, Yaojing Chen, Zhuo Rachel Han, Yin Wang, Bing Liu, Zhanjun Zhang, Xi-Nian Zuo
{"title":"Older is order: entropy reduction in cortical spontaneous activity marks healthy aging.","authors":"Da Chang, Xiu Wang, Yaojing Chen, Zhuo Rachel Han, Yin Wang, Bing Liu, Zhanjun Zhang, Xi-Nian Zuo","doi":"10.1186/s12868-024-00916-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of longitudinal neuroimaging resource.</p><p><strong>Results: </strong>We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy reductions were also evident for large-scale cortical networks, although with different rates of reduction for different networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order association networks.</p><p><strong>Conclusions: </strong>Our study confirmed that cortical entropy decreases continually in the aging process, both globally and regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of the complexity hierarchy and the diversity of complexity strengthen.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"25 1","pages":"74"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-024-00916-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Entropy trajectories remain unclear for the aging process of human brain system due to the lacking of longitudinal neuroimaging resource.

Results: We used open data from an accelerated longitudinal cohort (PREVENT-AD) that included 24 healthy aging participants followed by 4 years with 5 visits per participant to establish cortical entropy aging curves and distinguish with the effects of age and cohort. This reveals that global cortical entropy decreased with aging, while a significant cohort effect was detectable that people who were born earlier showed higher cortical entropy. Such entropy reductions were also evident for large-scale cortical networks, although with different rates of reduction for different networks. Specifically, the primary and intermediate networks reduce their entropy faster than the higher-order association networks.

Conclusions: Our study confirmed that cortical entropy decreases continually in the aging process, both globally and regionally, and we conclude two specific characteristics of the entropy of the human cortex with aging: the shift of the complexity hierarchy and the diversity of complexity strengthen.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Neuroscience
BMC Neuroscience 医学-神经科学
CiteScore
3.90
自引率
0.00%
发文量
64
审稿时长
16 months
期刊介绍: BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信