Estimating Ground Reaction Forces from Gait Kinematics in Cerebral Palsy: A Convolutional Neural Network Approach.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Mustafa Erkam Ozates, Firooz Salami, Sebastian Immanuel Wolf, Yunus Ziya Arslan
{"title":"Estimating Ground Reaction Forces from Gait Kinematics in Cerebral Palsy: A Convolutional Neural Network Approach.","authors":"Mustafa Erkam Ozates, Firooz Salami, Sebastian Immanuel Wolf, Yunus Ziya Arslan","doi":"10.1007/s10439-024-03658-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>While gait analysis is essential for assessing neuromotor disorders like cerebral palsy (CP), capturing accurate ground reaction force (GRF) measurements during natural walking presents challenges, particularly due to variations in gait patterns. Previous studies have explored GRF prediction using machine learning, but specific focus on patients with CP is lacking. This research aims to address this gap by predicting GRF using joint angles derived from marker data during gait in patients with CP, thereby suggesting a protocol for gait analysis without the need for force plates.</p><p><strong>Methods: </strong>The study employed an extensive dataset comprising both typically developed (TD) subjects (n = 132) and patients with CP (n = 622), captured using motion capture systems and force plates. Kinematic data included lower limb angles in three planes of motion, while GRF data encompassed three axes. A one-dimensional convolutional neural network model was designed to extract features from kinematic time series, followed by densely connected layers for GRF prediction. Evaluation metrics included normalized root mean squared error (nRMSE) and Pearson correlation coefficient (PCC).</p><p><strong>Results: </strong>GRFs of patients with CP were predicted with nRMSE values consistently below 20.13% and PCC scores surpassing 0.84. In the TD group, all GRFs were predicted with higher accuracy, showing nRMSE values lower than 12.65% and PCC scores exceeding 0.94.</p><p><strong>Conclusion: </strong>The predictions considerably captured the patterns observed in the experimentally obtained GRFs. Despite limitations, including the absence of upper extremity kinematics data and the need for continuous model evolution, the study demonstrates the potential of machine learning in predicting GRFs in patients with CP, albeit with current prediction errors constraining immediate clinical applicability.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03658-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: While gait analysis is essential for assessing neuromotor disorders like cerebral palsy (CP), capturing accurate ground reaction force (GRF) measurements during natural walking presents challenges, particularly due to variations in gait patterns. Previous studies have explored GRF prediction using machine learning, but specific focus on patients with CP is lacking. This research aims to address this gap by predicting GRF using joint angles derived from marker data during gait in patients with CP, thereby suggesting a protocol for gait analysis without the need for force plates.

Methods: The study employed an extensive dataset comprising both typically developed (TD) subjects (n = 132) and patients with CP (n = 622), captured using motion capture systems and force plates. Kinematic data included lower limb angles in three planes of motion, while GRF data encompassed three axes. A one-dimensional convolutional neural network model was designed to extract features from kinematic time series, followed by densely connected layers for GRF prediction. Evaluation metrics included normalized root mean squared error (nRMSE) and Pearson correlation coefficient (PCC).

Results: GRFs of patients with CP were predicted with nRMSE values consistently below 20.13% and PCC scores surpassing 0.84. In the TD group, all GRFs were predicted with higher accuracy, showing nRMSE values lower than 12.65% and PCC scores exceeding 0.94.

Conclusion: The predictions considerably captured the patterns observed in the experimentally obtained GRFs. Despite limitations, including the absence of upper extremity kinematics data and the need for continuous model evolution, the study demonstrates the potential of machine learning in predicting GRFs in patients with CP, albeit with current prediction errors constraining immediate clinical applicability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信