{"title":"Genome-Wide Identification and In Silico Analysis of Annexins in Chickpea (Cicer arietinum L.).","authors":"Bharati Swain, Prateek Gupta, Deepanker Yadav","doi":"10.1007/s10528-024-10979-z","DOIUrl":null,"url":null,"abstract":"<p><p>Annexins are a ubiquitous, evolutionarily conserved group of Ca<sup>2+</sup>-dependent phospholipid-binding proteins. They are a family of less numerous and more varied proteins that form a unique monophyletic group. They play an important role in various abiotic and biotic stress responses through Ca<sup>2+</sup>-mediated signaling. Chickpea (Cicer arietinum L.) is one of the most widely grown legume crops in the world. In recent years, intensive research has been carried out to identify and elucidate genes and molecular pathways that control stress responses in plants. The availability of the chickpea genome has hastened the functional genomics of chickpea. In the current study, we attempted Genome-wide identification and in silico analysis of Annexins in chickpea. Thirteen annexin sequences have been identified in the chickpea genome. Four conserved annexin domains were found in ten annexin members, while three annexins CaAnn5, CaAnn12, and CaAnn13, showed three, two, and one conserved domain, respectively. The gene structure analysis showed the presence of multiple exons in all thirteen annexins. Most Annexin genes are composed of 3-5 introns. Their chromosomal locations showed that out of thirteen genes, ten could be mapped on four chromosomes. Three genes were placed on the scaffold regions. The promoter sequence analysis of all thirteen annexins showed the presence of various elements related to growth and development and response to different phytohormones and abiotic stress. The gene expression data of different annexins in various tissues like leaf, shoot, root, flower bud, and young pod showed their differential expression. Analysis of expression data of roots in drought stress showed their differential expression with the different stages of plant growth. Overall, the current findings show the possible role of CaAnns in different stages of plant growth and development in normal and stressful conditions. Moreover, these findings will be helpful in the further characterization of CaAnn genes and their promoters.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10979-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Annexins are a ubiquitous, evolutionarily conserved group of Ca2+-dependent phospholipid-binding proteins. They are a family of less numerous and more varied proteins that form a unique monophyletic group. They play an important role in various abiotic and biotic stress responses through Ca2+-mediated signaling. Chickpea (Cicer arietinum L.) is one of the most widely grown legume crops in the world. In recent years, intensive research has been carried out to identify and elucidate genes and molecular pathways that control stress responses in plants. The availability of the chickpea genome has hastened the functional genomics of chickpea. In the current study, we attempted Genome-wide identification and in silico analysis of Annexins in chickpea. Thirteen annexin sequences have been identified in the chickpea genome. Four conserved annexin domains were found in ten annexin members, while three annexins CaAnn5, CaAnn12, and CaAnn13, showed three, two, and one conserved domain, respectively. The gene structure analysis showed the presence of multiple exons in all thirteen annexins. Most Annexin genes are composed of 3-5 introns. Their chromosomal locations showed that out of thirteen genes, ten could be mapped on four chromosomes. Three genes were placed on the scaffold regions. The promoter sequence analysis of all thirteen annexins showed the presence of various elements related to growth and development and response to different phytohormones and abiotic stress. The gene expression data of different annexins in various tissues like leaf, shoot, root, flower bud, and young pod showed their differential expression. Analysis of expression data of roots in drought stress showed their differential expression with the different stages of plant growth. Overall, the current findings show the possible role of CaAnns in different stages of plant growth and development in normal and stressful conditions. Moreover, these findings will be helpful in the further characterization of CaAnn genes and their promoters.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.