{"title":"Algae-synthesized cerium oxide nanoparticles for antibiotic degradation in water and subsequent bioenergy production.","authors":"Monika Dubey, Jyoti Sharma, Richa Krishna, Vipin Chawla, Subhasha Nigam, Monika Joshi","doi":"10.1007/s13205-024-04134-z","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, CeO<sub>2</sub> nanoparticles were synthesized using one-pot green route with high yield using microalgae <i>Chlorella sorokiniana.</i> The synthesized CeO<sub>2</sub> nanoparticles (CeO<sub>2</sub>-np) exhibited rapid photocatalytic degradation 98.2% of doxycycline (DC) (20 mg/L) in only 30 min under visible light at pH7 in water. It was encouraging that CeO<sub>2</sub>-np did not demonstrate a loss of photocatalytic activity up to five repeated cycles, confirming its stability during the degradation process. Moreover, cytotoxicity evaluation of CeO<sub>2</sub>-nps on the green alga <i>Chlorella sorokiniana</i> advocated its non-toxic nature by supporting algal growth (0.52 g/L biomass<i>)</i> with 13% total lipids after 12 days in DC treated water. Ultimately, the produced algal biomass could be further utilized as a feedstock of biofuel production.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04134-z.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"318"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04134-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, CeO2 nanoparticles were synthesized using one-pot green route with high yield using microalgae Chlorella sorokiniana. The synthesized CeO2 nanoparticles (CeO2-np) exhibited rapid photocatalytic degradation 98.2% of doxycycline (DC) (20 mg/L) in only 30 min under visible light at pH7 in water. It was encouraging that CeO2-np did not demonstrate a loss of photocatalytic activity up to five repeated cycles, confirming its stability during the degradation process. Moreover, cytotoxicity evaluation of CeO2-nps on the green alga Chlorella sorokiniana advocated its non-toxic nature by supporting algal growth (0.52 g/L biomass) with 13% total lipids after 12 days in DC treated water. Ultimately, the produced algal biomass could be further utilized as a feedstock of biofuel production.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04134-z.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.