{"title":"Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation","authors":"Yangjin Lee, Uje Choi, Kwanpyo Kim, Alex Zettl","doi":"10.1186/s40580-024-00460-3","DOIUrl":null,"url":null,"abstract":"<div><p>Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00460-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00460-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.