Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yangjin Lee, Uje Choi, Kwanpyo Kim, Alex Zettl
{"title":"Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation","authors":"Yangjin Lee,&nbsp;Uje Choi,&nbsp;Kwanpyo Kim,&nbsp;Alex Zettl","doi":"10.1186/s40580-024-00460-3","DOIUrl":null,"url":null,"abstract":"<div><p>Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00460-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00460-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信