Effect of Sodium Alginate-Bulk Chitosan/Chitosan Nanoparticle Wall Matrix on the Viability of Lactobacillus plantarum Under Simulated Gastrointestinal Fluids.
Raghda Abdulhussain Kareem, Seyed Hadi Razavi, Zeinab E Mousavi
{"title":"Effect of Sodium Alginate-Bulk Chitosan/Chitosan Nanoparticle Wall Matrix on the Viability of Lactobacillus plantarum Under Simulated Gastrointestinal Fluids.","authors":"Raghda Abdulhussain Kareem, Seyed Hadi Razavi, Zeinab E Mousavi","doi":"10.1007/s12010-024-05105-z","DOIUrl":null,"url":null,"abstract":"<p><p>The viability of probiotic cells decreases during passage through the gastrointestinal tract. The process of probiotics encapsulation with sodium alginate and chitosan polymers was carried out to protect the Lactobacillus plantarum in adverse conditions. Lactobacillus plantarum was entrapped in sodium alginate/chitosan (SA/BChi) and sodium alginate/nano-chitosan (SA/NChi) wall materials. Encapsulating L. plantarum with SA/BChi and SA/NChi resulted in a high encapsulation efficiency % of ~ 86.41 to 91.09%. In addition, coating bacteria cells in encapsulants improved the survivability of the cells under the simulated gastrointestinal fluids by ~ 52.61% in SA/Chi and 58.04% in SA/NChi compared to 29% for unencapsulated forms. Probiotic beads under field emission-scanning electron microscopy (FE-SEM) were morphologically compact with a cracked appearance of SA/NChi beads. The Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) showed vigorous electrostatic interaction between polymers, as well as the high melting points, which corroborate the previous investigations in the field for using SA/BChi or SA/NChi as a promising encapsulating agent for ameliorating the survivability of probiotics under harsh conditions. The distinctive properties possessed by the two coatings make them excellent candidates for use as polymeric carriers in probiotic delivery systems.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05105-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The viability of probiotic cells decreases during passage through the gastrointestinal tract. The process of probiotics encapsulation with sodium alginate and chitosan polymers was carried out to protect the Lactobacillus plantarum in adverse conditions. Lactobacillus plantarum was entrapped in sodium alginate/chitosan (SA/BChi) and sodium alginate/nano-chitosan (SA/NChi) wall materials. Encapsulating L. plantarum with SA/BChi and SA/NChi resulted in a high encapsulation efficiency % of ~ 86.41 to 91.09%. In addition, coating bacteria cells in encapsulants improved the survivability of the cells under the simulated gastrointestinal fluids by ~ 52.61% in SA/Chi and 58.04% in SA/NChi compared to 29% for unencapsulated forms. Probiotic beads under field emission-scanning electron microscopy (FE-SEM) were morphologically compact with a cracked appearance of SA/NChi beads. The Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) showed vigorous electrostatic interaction between polymers, as well as the high melting points, which corroborate the previous investigations in the field for using SA/BChi or SA/NChi as a promising encapsulating agent for ameliorating the survivability of probiotics under harsh conditions. The distinctive properties possessed by the two coatings make them excellent candidates for use as polymeric carriers in probiotic delivery systems.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.