Bibliometric Analysis and Network Visualization of Nanozymes for Microbial Theranostics in the Last Decade.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hamza Ettadili, Caner Vural
{"title":"Bibliometric Analysis and Network Visualization of Nanozymes for Microbial Theranostics in the Last Decade.","authors":"Hamza Ettadili, Caner Vural","doi":"10.1007/s12010-024-05120-0","DOIUrl":null,"url":null,"abstract":"<p><p>Nanozymes are a class of nanomaterials that are capable of mimicking the activities of natural enzymes. They are currently receiving considerable attention due to their advantageous properties. The objective of this study is to provide a comprehensive analysis of the advancements and trends in nanozymes for microbial theranostics research over the past decade through a detailed bibliometric approach. For this purpose, an effective search query was formulated, and relevant publications from 2013 to 2023 were collected from the Web of Science Core Collection database. Subsequently, the following softwares were employed for analysis: VOSviewer, the Bibliometrix R package, and GraphPad Prism 8.0.2. The findings revealed a statistically significant positive correlation (r = 0.993; p < 0.0001) between publications and citations, in addition to an important growth rate of scientific output of approximately 28.90%. China, India, and the USA were the most productive countries, whereas progress in low- and middle-income countries remained constrained. The Chinese Academy of Sciences was the most productive institution, and remarkably almost the top 10 productive authors were from China. Regarding keywords analysis, current research hotspots are primarily concentrated on the application of nanozymes in anti-biofilm-related research, antibacterial activity and therapy, the development of biosensors for microbial detection and control, and the advancement of wound disinfection and therapy.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05120-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanozymes are a class of nanomaterials that are capable of mimicking the activities of natural enzymes. They are currently receiving considerable attention due to their advantageous properties. The objective of this study is to provide a comprehensive analysis of the advancements and trends in nanozymes for microbial theranostics research over the past decade through a detailed bibliometric approach. For this purpose, an effective search query was formulated, and relevant publications from 2013 to 2023 were collected from the Web of Science Core Collection database. Subsequently, the following softwares were employed for analysis: VOSviewer, the Bibliometrix R package, and GraphPad Prism 8.0.2. The findings revealed a statistically significant positive correlation (r = 0.993; p < 0.0001) between publications and citations, in addition to an important growth rate of scientific output of approximately 28.90%. China, India, and the USA were the most productive countries, whereas progress in low- and middle-income countries remained constrained. The Chinese Academy of Sciences was the most productive institution, and remarkably almost the top 10 productive authors were from China. Regarding keywords analysis, current research hotspots are primarily concentrated on the application of nanozymes in anti-biofilm-related research, antibacterial activity and therapy, the development of biosensors for microbial detection and control, and the advancement of wound disinfection and therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信