Ashmitha Kalairaj, Swethashree Rajendran, R Karthikeyan, Rames C Panda, T Senthilvelan
{"title":"A Comprehensive Review on Preparation of Silver Nanoparticles from a Bacteriocin for the Natural Preservation of Food Products.","authors":"Ashmitha Kalairaj, Swethashree Rajendran, R Karthikeyan, Rames C Panda, T Senthilvelan","doi":"10.1007/s12010-024-05122-y","DOIUrl":null,"url":null,"abstract":"<p><p>Food preservation aims to maintain safe and nutritious food for extended periods by inhibiting microbial growth that causes spoilage and poses health risks. Traditional chemical preservatives like sodium sulfite, sodium nitrite, sodium benzoate, tBHQ and BHA have raised concerns due to potential carcinogenicity, genotoxicity and allergies with long-term consumption. As a natural alternative, bacteriocins have emerged for food preservation. These ribosomally synthesised antimicrobial peptides are produced by various microorganisms, including bacteria, fungi and yeast, typically during their stationary growth phase. Bacteriocins are categorised into four classes based on structure and function, with molecular weights averaging between 30 and 80 kDa. They exhibit antimicrobial activity against a range of bacteria, mediating complex interactions between bacterial species and enhancing competitiveness and survival of producer strains. Both gram-positive and gram-negative bacteria produce bacteriocins. Recent advancements have identified and optimized bacteriocins for applications in food technology, extending shelf life, managing foodborne illnesses and contributing to public health preservation. Their eco-friendly nature and safety profile make bacteriocins promising for future food preservation strategies without detrimental effects on humans or animals. The current review has mainly focused on the preservation of food products using bacteriocin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05122-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food preservation aims to maintain safe and nutritious food for extended periods by inhibiting microbial growth that causes spoilage and poses health risks. Traditional chemical preservatives like sodium sulfite, sodium nitrite, sodium benzoate, tBHQ and BHA have raised concerns due to potential carcinogenicity, genotoxicity and allergies with long-term consumption. As a natural alternative, bacteriocins have emerged for food preservation. These ribosomally synthesised antimicrobial peptides are produced by various microorganisms, including bacteria, fungi and yeast, typically during their stationary growth phase. Bacteriocins are categorised into four classes based on structure and function, with molecular weights averaging between 30 and 80 kDa. They exhibit antimicrobial activity against a range of bacteria, mediating complex interactions between bacterial species and enhancing competitiveness and survival of producer strains. Both gram-positive and gram-negative bacteria produce bacteriocins. Recent advancements have identified and optimized bacteriocins for applications in food technology, extending shelf life, managing foodborne illnesses and contributing to public health preservation. Their eco-friendly nature and safety profile make bacteriocins promising for future food preservation strategies without detrimental effects on humans or animals. The current review has mainly focused on the preservation of food products using bacteriocin.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.