P Thiebot, R Magny, P Martins, P Houze, V Bloch, F Vorspan, N Auzeil, L Labat
{"title":"Quantitative analysis of cannabinoids and metabolites in oral fluid by volumetric absorptive microsampling combined with UHPLC-HRMS.","authors":"P Thiebot, R Magny, P Martins, P Houze, V Bloch, F Vorspan, N Auzeil, L Labat","doi":"10.1007/s00216-024-05651-9","DOIUrl":null,"url":null,"abstract":"<p><p>With recent evolution of cannabis legalization around the world and multiplication of cannabis derived products, identifying and qualifying cannabis consumption has a proven interest. Although blood, plasma, and urine are common matrices widely used in toxicology laboratories, oral fluid presents specific advantages. In the context of doping tests, addiction consultation or roadside checks, where other matrices are impractical to collect or can be adulterated, oral fluid is a promising matrix that allows a non-invasive, rapid, and monitored self-sampling. However, available devices required a consequent volume of oral fluid, more than 250 µL, sometimes difficult to collect. We present here a fully optimized quantitative method for seven cannabinoids, including four metabolites, in oral fluid, Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol; cannabidiol, 7-hydroxy and 7-carboxycannabidiol; and cannabinol. After self-collection of 20 µL using an accurate and precise volumetric absorptive microsampling device (VAMS<sup>®</sup>), cannabinoids were derivatized with 2-fluoro-1-methylpyridinium p-toluenesulfonate to increase sensitivity. The successive steps of the proposed method, including biosampling, 1 h sample preparation with derivatization, and acquisition by ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry, were fully optimized. A limit of quantification of 0.5 ng/mL (≈10 pg per sampling) was thus targeted, adapted to the legal threshold required by the authorities and to clinical monitoring. Applied to six cannabis consumers, the proposed method made it possible to quantify in 20 µL oral fluid samples, Δ9-tetrahydrocannabinol ranging from 0.5 to 6236 ng/mL, cannabidiol from 0.6 to 190 ng/mL and cannabinol from 0.5 to 118 ng/mL.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05651-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With recent evolution of cannabis legalization around the world and multiplication of cannabis derived products, identifying and qualifying cannabis consumption has a proven interest. Although blood, plasma, and urine are common matrices widely used in toxicology laboratories, oral fluid presents specific advantages. In the context of doping tests, addiction consultation or roadside checks, where other matrices are impractical to collect or can be adulterated, oral fluid is a promising matrix that allows a non-invasive, rapid, and monitored self-sampling. However, available devices required a consequent volume of oral fluid, more than 250 µL, sometimes difficult to collect. We present here a fully optimized quantitative method for seven cannabinoids, including four metabolites, in oral fluid, Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol; cannabidiol, 7-hydroxy and 7-carboxycannabidiol; and cannabinol. After self-collection of 20 µL using an accurate and precise volumetric absorptive microsampling device (VAMS®), cannabinoids were derivatized with 2-fluoro-1-methylpyridinium p-toluenesulfonate to increase sensitivity. The successive steps of the proposed method, including biosampling, 1 h sample preparation with derivatization, and acquisition by ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry, were fully optimized. A limit of quantification of 0.5 ng/mL (≈10 pg per sampling) was thus targeted, adapted to the legal threshold required by the authorities and to clinical monitoring. Applied to six cannabis consumers, the proposed method made it possible to quantify in 20 µL oral fluid samples, Δ9-tetrahydrocannabinol ranging from 0.5 to 6236 ng/mL, cannabidiol from 0.6 to 190 ng/mL and cannabinol from 0.5 to 118 ng/mL.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.