{"title":"Performance enhancement of mid-infrared NH<sub>3</sub> sensor using 9.06 μm QCL based on spectral optimization and NGO-LSTM model.","authors":"Guolin Li, Lupeng Jia, Enting Dong, Siyu Zhang, Fuli Zhao","doi":"10.1007/s00216-024-05677-z","DOIUrl":null,"url":null,"abstract":"<p><p>A detection sensor for mid-infrared ammonia (NH<sub>3</sub>) has been developed according to wavelength modulation spectroscopy-tunable diode laser absorption spectroscopy (WMS-TDLAS) technology, which can be applied in the chemical and aquaculture industries. A 9.06 µm quantum cascade laser (QCL) and a 41.5 m multipass gas cell (MPGC) were used to increase the detection limit of NH<sub>3</sub>. Spectral optimization and the NGO-LSTM (northern goshawk optimization-long short-term memory) model applied to gas detection are designed to improve the accuracy of sensor. Among them, the design of the temperature compensation and spectral drift correction reduces the effect of temperature and other environmental factors. The original second harmonic signal was denoised using the CEEMDAN-WPD (complete ensemble empirical mode decomposition with adaptive noise-wavelet packet decomposition) algorithm. And the NGO-LSTM algorithm was applied to NH<sub>3</sub> concentration inversion, adaptively optimizing the weight parameters. The experiment reflects that the measured value of the sensor has an excellent linear relationship with the set value (R<sup>2</sup> 0.9992). The long-term stability of the sensor was verified based on 400 ppb NH<sub>3</sub>, with an RMSE (root mean square error) of 4.754 ppb. Allan-Werle bias analysis shows that the detection limit (LoD) is approximately 792 ppt at an integration time of 232 s. Subsequent response time and atmospheric environment simulation experiments have proven that this sensor provides an efficient approach for real-time monitoring of NH<sub>3</sub>.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05677-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A detection sensor for mid-infrared ammonia (NH3) has been developed according to wavelength modulation spectroscopy-tunable diode laser absorption spectroscopy (WMS-TDLAS) technology, which can be applied in the chemical and aquaculture industries. A 9.06 µm quantum cascade laser (QCL) and a 41.5 m multipass gas cell (MPGC) were used to increase the detection limit of NH3. Spectral optimization and the NGO-LSTM (northern goshawk optimization-long short-term memory) model applied to gas detection are designed to improve the accuracy of sensor. Among them, the design of the temperature compensation and spectral drift correction reduces the effect of temperature and other environmental factors. The original second harmonic signal was denoised using the CEEMDAN-WPD (complete ensemble empirical mode decomposition with adaptive noise-wavelet packet decomposition) algorithm. And the NGO-LSTM algorithm was applied to NH3 concentration inversion, adaptively optimizing the weight parameters. The experiment reflects that the measured value of the sensor has an excellent linear relationship with the set value (R2 0.9992). The long-term stability of the sensor was verified based on 400 ppb NH3, with an RMSE (root mean square error) of 4.754 ppb. Allan-Werle bias analysis shows that the detection limit (LoD) is approximately 792 ppt at an integration time of 232 s. Subsequent response time and atmospheric environment simulation experiments have proven that this sensor provides an efficient approach for real-time monitoring of NH3.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.