An integrated photocatalytic redox architecture for simultaneous overall conversion of CO2 and H2O toward CH4 and H2O2.

IF 18.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Muhammad Salman Nasir, Bowen Sheng, Ying Zhao, Haotian Ye, Jun Song, Jinglin Li, Ping Wang, Tao Wang, Xinqiang Wang, Zhen Huang, Baowen Zhou
{"title":"An integrated photocatalytic redox architecture for simultaneous overall conversion of CO<sub>2</sub> and H<sub>2</sub>O toward CH<sub>4</sub> and H<sub>2</sub>O<sub>2</sub>.","authors":"Muhammad Salman Nasir, Bowen Sheng, Ying Zhao, Haotian Ye, Jun Song, Jinglin Li, Ping Wang, Tao Wang, Xinqiang Wang, Zhen Huang, Baowen Zhou","doi":"10.1016/j.scib.2024.11.021","DOIUrl":null,"url":null,"abstract":"<p><p>Solar-driven overall conversion of CO<sub>2</sub> and H<sub>2</sub>O into fuels and chemicals shows an ultimate strategy for carbon neutrality yet remains a huge challenge. Herein, an integrated photocatalytic redox architecture of Zn NPs/GaN Nanowires (NWs)/Si is explored for light-driven overall conversion of CO<sub>2</sub> and H<sub>2</sub>O into CH<sub>4</sub> and H<sub>2</sub>O<sub>2</sub> simultaneously without any external sacrificial agents and additives. The as-designed architecture affords a benchmark CH<sub>4</sub> activity of 189 mmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup> with a high selectivity of 93.6%, in the synchronized formation of H<sub>2</sub>O<sub>2</sub> at a considerable rate of 25 m g<sup>-1</sup> h<sup>-1</sup>. Moreover, a considerable turnover number of 27,280 mol CH<sub>4</sub> per mol Zn was achieved over a long-term operation of 80 h. By operando spectroscopic characterizations, isotope experiments, and density functional theory calculations, it is unraveled that Zn sites are synergetic with GaN to drive CO<sub>2</sub>-to-CH<sub>4</sub> conversion with a lowered energy barrier of 0.27 eV while inhibiting hydrogen evolution reaction with a relatively high energy barrier of 0.93 eV. Notably, owing to the unique surface properties of GaN, water is split into *OH and *H, followed by the formation of H<sub>2</sub>O<sub>2</sub> because of the alleviated adsorption strength of *OH by Zn NPs. Together, the hierarchical architecture enables the achievement of high activity and high selectivity of CH<sub>4</sub> from CO<sub>2</sub> reduction in distilled water along with the generation of H<sub>2</sub>O<sub>2</sub>. This work provides an integrated photocatalytic redox architecture for the synchronized production of CH<sub>4</sub> and H<sub>2</sub>O<sub>2</sub> with the only inputs of CO<sub>2</sub>, distilled water, and light.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2024.11.021","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven overall conversion of CO2 and H2O into fuels and chemicals shows an ultimate strategy for carbon neutrality yet remains a huge challenge. Herein, an integrated photocatalytic redox architecture of Zn NPs/GaN Nanowires (NWs)/Si is explored for light-driven overall conversion of CO2 and H2O into CH4 and H2O2 simultaneously without any external sacrificial agents and additives. The as-designed architecture affords a benchmark CH4 activity of 189 mmol gcat-1 h-1 with a high selectivity of 93.6%, in the synchronized formation of H2O2 at a considerable rate of 25 m g-1 h-1. Moreover, a considerable turnover number of 27,280 mol CH4 per mol Zn was achieved over a long-term operation of 80 h. By operando spectroscopic characterizations, isotope experiments, and density functional theory calculations, it is unraveled that Zn sites are synergetic with GaN to drive CO2-to-CH4 conversion with a lowered energy barrier of 0.27 eV while inhibiting hydrogen evolution reaction with a relatively high energy barrier of 0.93 eV. Notably, owing to the unique surface properties of GaN, water is split into *OH and *H, followed by the formation of H2O2 because of the alleviated adsorption strength of *OH by Zn NPs. Together, the hierarchical architecture enables the achievement of high activity and high selectivity of CH4 from CO2 reduction in distilled water along with the generation of H2O2. This work provides an integrated photocatalytic redox architecture for the synchronized production of CH4 and H2O2 with the only inputs of CO2, distilled water, and light.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信