Leaching profile of per- and polyfluoroalkyl substances (PFAS) from biosolids after thickening, anaerobic digestion, and dewatering processes, and significance of protein, phosphorus, and selected ions.
{"title":"Leaching profile of per- and polyfluoroalkyl substances (PFAS) from biosolids after thickening, anaerobic digestion, and dewatering processes, and significance of protein, phosphorus, and selected ions.","authors":"Yelena Katsenovich, Berrin Tansel, Natalia Soares Quinete, Zariah Nasir, Joshua Omaojo Ocheje, Maria Mendoza Manzano","doi":"10.1016/j.scitotenv.2024.177777","DOIUrl":null,"url":null,"abstract":"<p><p>Batch leaching experiments were conducted to evaluate the release of forty per- and polyfluoroalkyl substances (PFAS) from sludge samples collected after thickening, anaerobic digestion, and dewatering processes at two wastewater treatment plants. The South District wastewater treatment plant (SDWWTP), which receives domestic wastewater and landfill leachate from a nearby landfill, and the Central District wastewater treatment plant (CDWWTP), which receives only domestic wastewater, were selected for this study. PFAS released into the aqueous phase were analyzed by sacrificial sampling after 1, 3, 7, 14, and 30 days. Results demonstrated rapid PFAS leaching, with the highest levels detected in biosolid leachates after just one day. Distinct differences were observed in PFAS composition and concentrations between the two treatment plants. Of the forty PFAS measured, nineteen were detected, with higher concentrations identified at SDWWTP. The input of landfill leachate to SDWWTP appears to have significantly contributed to the elevated levels of specific PFAS, particularly long-chain compounds, compared to the emerging short-chain PFAS found in biosolids. In addition to PFAS analysis, the compositions of the sludge samples, including total and volatile solids, protein, phosphorus (P), iron, aluminum, calcium, and magnesium, were also assessed. Spearman correlation analyses revealed moderate to strong relationships between PFAS levels in leachate and certain sludge components. For instance, correlations between P content and PFCAs and FTCAs were moderate (R<sup>2</sup> = 0.45-0.76). In thickener sludge leachate, strong correlations were observed for FPrPA (3:3 FTCA), PFDA, and PFTrDA with P, with R<sup>2</sup> values of 0.60, 0.53, and 0.54, respectively. In the digested sludge, correlations were found for PFHpA, PFDA, and PFNA (R<sup>2</sup> = 0.45-0.76). Also, for digested sludge leachate, strong correlations were found between the individual compounds PFHpA, PFHxA, PFNA, PFOA, and PFPeA (R<sup>2</sup> = 0.60-0.88). Predominant PFAS in leachate from biosolids were identified, including PFOS, FPePA (5:3 FTCA), PFPeA, PFBA, PFHxA, N-EtFOSAA, and 6-2 FTS.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"957 ","pages":"177777"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177777","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Batch leaching experiments were conducted to evaluate the release of forty per- and polyfluoroalkyl substances (PFAS) from sludge samples collected after thickening, anaerobic digestion, and dewatering processes at two wastewater treatment plants. The South District wastewater treatment plant (SDWWTP), which receives domestic wastewater and landfill leachate from a nearby landfill, and the Central District wastewater treatment plant (CDWWTP), which receives only domestic wastewater, were selected for this study. PFAS released into the aqueous phase were analyzed by sacrificial sampling after 1, 3, 7, 14, and 30 days. Results demonstrated rapid PFAS leaching, with the highest levels detected in biosolid leachates after just one day. Distinct differences were observed in PFAS composition and concentrations between the two treatment plants. Of the forty PFAS measured, nineteen were detected, with higher concentrations identified at SDWWTP. The input of landfill leachate to SDWWTP appears to have significantly contributed to the elevated levels of specific PFAS, particularly long-chain compounds, compared to the emerging short-chain PFAS found in biosolids. In addition to PFAS analysis, the compositions of the sludge samples, including total and volatile solids, protein, phosphorus (P), iron, aluminum, calcium, and magnesium, were also assessed. Spearman correlation analyses revealed moderate to strong relationships between PFAS levels in leachate and certain sludge components. For instance, correlations between P content and PFCAs and FTCAs were moderate (R2 = 0.45-0.76). In thickener sludge leachate, strong correlations were observed for FPrPA (3:3 FTCA), PFDA, and PFTrDA with P, with R2 values of 0.60, 0.53, and 0.54, respectively. In the digested sludge, correlations were found for PFHpA, PFDA, and PFNA (R2 = 0.45-0.76). Also, for digested sludge leachate, strong correlations were found between the individual compounds PFHpA, PFHxA, PFNA, PFOA, and PFPeA (R2 = 0.60-0.88). Predominant PFAS in leachate from biosolids were identified, including PFOS, FPePA (5:3 FTCA), PFPeA, PFBA, PFHxA, N-EtFOSAA, and 6-2 FTS.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.