Unveiling a Hidden Synergy: Empowering Biofertilizers for Enhanced Plant Growth With Silicon in Stressed Agriculture.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Hassan Etesami
{"title":"Unveiling a Hidden Synergy: Empowering Biofertilizers for Enhanced Plant Growth With Silicon in Stressed Agriculture.","authors":"Hassan Etesami","doi":"10.1111/pce.15300","DOIUrl":null,"url":null,"abstract":"<p><p>Food security is increasingly threatened by climate change and environmental pressures that hinder plant growth and development. Harnessing soil microorganisms, such as mycorrhizal fungi and plant growth-promoting bacteria, offers a promising approach to boost crop production. However, existing screening methods for these microorganisms often prove ineffective in real-world, stress-prone environments, limiting the efficacy of microbial biofertilizers. To address this challenge, this review proposes the integration of silicon-renowned for its stress-mitigating properties in plants-with biofertilizers. Silicon has been shown to work synergistically with plant growth-promoting microorganisms, enhancing plant resilience to environmental stress while improving colonization efficiency and plant-microbe interactions in stressful conditions. By combining silicon with biofertilizers to create silicon-enriched biofertilizers, this strategy has the potential to optimize microbial performance and fortify food security against global challenges. The review advocates for the co-application of silicon and microbial biofertilizers as a sustainable solution to boost plant resilience against environmental stressors, thereby contributing to agricultural sustainability.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15300","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Food security is increasingly threatened by climate change and environmental pressures that hinder plant growth and development. Harnessing soil microorganisms, such as mycorrhizal fungi and plant growth-promoting bacteria, offers a promising approach to boost crop production. However, existing screening methods for these microorganisms often prove ineffective in real-world, stress-prone environments, limiting the efficacy of microbial biofertilizers. To address this challenge, this review proposes the integration of silicon-renowned for its stress-mitigating properties in plants-with biofertilizers. Silicon has been shown to work synergistically with plant growth-promoting microorganisms, enhancing plant resilience to environmental stress while improving colonization efficiency and plant-microbe interactions in stressful conditions. By combining silicon with biofertilizers to create silicon-enriched biofertilizers, this strategy has the potential to optimize microbial performance and fortify food security against global challenges. The review advocates for the co-application of silicon and microbial biofertilizers as a sustainable solution to boost plant resilience against environmental stressors, thereby contributing to agricultural sustainability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信