Low friction hydrogel with diclofenac eluting ability for dry eye therapeutic contact lenses.

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Diana C Silva, Margarida Oliveira, Carolina Marto-Costa, João Teixeira, Madalena Salema Oom, Carlos A Pinto, Jorge A Saraiva, Ana Clara Marques, Laurence Fitzhenry, Ana Paula Serro
{"title":"Low friction hydrogel with diclofenac eluting ability for dry eye therapeutic contact lenses.","authors":"Diana C Silva, Margarida Oliveira, Carolina Marto-Costa, João Teixeira, Madalena Salema Oom, Carlos A Pinto, Jorge A Saraiva, Ana Clara Marques, Laurence Fitzhenry, Ana Paula Serro","doi":"10.1016/j.ymeth.2024.11.015","DOIUrl":null,"url":null,"abstract":"<p><p>When placed in the eye, contact lenses (CLs) disturb the tear fluid and affect the natural tribological behaviour of the eye. The disruption in the contact mechanics between the ocular tissues can increase frictional shear stress and ocular dryness, causing discomfort. Ultimately, continuous CLs wear can trigger inflammation which is particularly critical for people suffering from dry eye. In this work, a double strategy was followed to obtain therapeutic daily disposable CLs for dry eye: a hydroxyethyl methacrylate (HEMA) based hydrogel was coated with two natural polysaccharides, chitosan (CHI) and hyaluronic acid (HA) and posteriorly loaded with an anti-inflammatory drug (diclofenac, DCF). Material sterilisation was carried out by high hydrostatic pressure (HHP) combined with moderate temperature. The friction coefficient (μ) was determined in the presence of different tear biomolecules (cholesterol, lysozyme and albumin) using a nanotribometer. Drug release experiments were performed in static and in hydrodynamic conditions. The material was extensively characterised, regarding surface morphology/topography, optical properties, water content and swelling behaviour, wettability, ionic and oxygen permeability and mechanical properties. It was found that the coating did not impair the physico-chemical properties relevant for the material's application in CLs. Besides, it also ensured a sustained release of DCF for 24 h in tests performed in hydrodynamic conditions that simulate those found in the eye, increasing significantly the amount of drug released. It reduced friction, improving the lubrication ability of the hydrogel, and presented antibacterial properties against S. aureus, P. aeruginosa and B. Cereus. The coated samples did not reveal any signs of cytotoxicity or potential eye irritation. Overall, the coating of the hydrogel may be useful to produce daily CLs able to alleviate dry eye symptoms and the discomfort of CLs wearers.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":"67-84"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2024.11.015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

When placed in the eye, contact lenses (CLs) disturb the tear fluid and affect the natural tribological behaviour of the eye. The disruption in the contact mechanics between the ocular tissues can increase frictional shear stress and ocular dryness, causing discomfort. Ultimately, continuous CLs wear can trigger inflammation which is particularly critical for people suffering from dry eye. In this work, a double strategy was followed to obtain therapeutic daily disposable CLs for dry eye: a hydroxyethyl methacrylate (HEMA) based hydrogel was coated with two natural polysaccharides, chitosan (CHI) and hyaluronic acid (HA) and posteriorly loaded with an anti-inflammatory drug (diclofenac, DCF). Material sterilisation was carried out by high hydrostatic pressure (HHP) combined with moderate temperature. The friction coefficient (μ) was determined in the presence of different tear biomolecules (cholesterol, lysozyme and albumin) using a nanotribometer. Drug release experiments were performed in static and in hydrodynamic conditions. The material was extensively characterised, regarding surface morphology/topography, optical properties, water content and swelling behaviour, wettability, ionic and oxygen permeability and mechanical properties. It was found that the coating did not impair the physico-chemical properties relevant for the material's application in CLs. Besides, it also ensured a sustained release of DCF for 24 h in tests performed in hydrodynamic conditions that simulate those found in the eye, increasing significantly the amount of drug released. It reduced friction, improving the lubrication ability of the hydrogel, and presented antibacterial properties against S. aureus, P. aeruginosa and B. Cereus. The coated samples did not reveal any signs of cytotoxicity or potential eye irritation. Overall, the coating of the hydrogel may be useful to produce daily CLs able to alleviate dry eye symptoms and the discomfort of CLs wearers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信