Richie P Goulding, Braeden T Charlton, Ellen A Breedveld, Matthijs van der Laan, Anne R Strating, Wendy Noort, Aryna Kolodyazhna, Brent Appelman, Michèle van Vugt, Anita E Grootemaat, Nicole N van der Wel, Jos J de Koning, Frank W Bloemers, Rob C I Wüst
{"title":"Skeletal muscle mitochondrial fragmentation predicts age-associated decline in physical capacity.","authors":"Richie P Goulding, Braeden T Charlton, Ellen A Breedveld, Matthijs van der Laan, Anne R Strating, Wendy Noort, Aryna Kolodyazhna, Brent Appelman, Michèle van Vugt, Anita E Grootemaat, Nicole N van der Wel, Jos J de Koning, Frank W Bloemers, Rob C I Wüst","doi":"10.1111/acel.14386","DOIUrl":null,"url":null,"abstract":"<p><p>Ageing substantially impairs skeletal muscle metabolic and physical function. Skeletal muscle mitochondrial health is also impaired with ageing, but the role of skeletal muscle mitochondrial fragmentation in age-related functional decline remains imprecisely characterized. Here, using a cross-sectional study design, we performed a detailed comparison of skeletal muscle mitochondrial characteristics in relation to in vivo markers of exercise capacity between young and middle-aged individuals. Despite similar overall oxidative phosphorylation capacity (young: 99 ± 17 vs. middle-aged: 99 ± 27 pmol O<sub>2</sub>.s<sup>-1</sup>.mg<sup>-1</sup>, p = 0.95) and intermyofibrillar mitochondrial density (young: 5.86 ± 0.57 vs. middle-aged: 5.68 ± 1.48%, p = 0.25), older participants displayed a more fragmented intermyofibrillar mitochondrial network (young: 1.15 ± 0.17 vs. middle-aged: 1.55 ± 0.15 A.U., p < 0.0001), a lower mitochondrial cristae density (young: 23.40 ± 7.12 vs. middle-aged: 13.55 ± 4.10%, p = 0.002) and a reduced subsarcolemmal mitochondrial density (young: 22.39 ± 6.50 vs. middle-aged: 13.92 ± 4.95%, p = 0.005). Linear regression analysis showed that 87% of the variance associated with maximal oxygen uptake could be explained by skeletal muscle mitochondrial fragmentation and cristae density alone, whereas subsarcolemmal mitochondrial density was positively associated with the capacity for oxygen extraction during exercise. Intramuscular lipid accumulation was positively associated with mitochondrial fragmentation and negatively associated with cristae density. Collectively, our work highlights the critical role of skeletal muscle mitochondria in age-associated declines in physical function.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14386"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14386","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ageing substantially impairs skeletal muscle metabolic and physical function. Skeletal muscle mitochondrial health is also impaired with ageing, but the role of skeletal muscle mitochondrial fragmentation in age-related functional decline remains imprecisely characterized. Here, using a cross-sectional study design, we performed a detailed comparison of skeletal muscle mitochondrial characteristics in relation to in vivo markers of exercise capacity between young and middle-aged individuals. Despite similar overall oxidative phosphorylation capacity (young: 99 ± 17 vs. middle-aged: 99 ± 27 pmol O2.s-1.mg-1, p = 0.95) and intermyofibrillar mitochondrial density (young: 5.86 ± 0.57 vs. middle-aged: 5.68 ± 1.48%, p = 0.25), older participants displayed a more fragmented intermyofibrillar mitochondrial network (young: 1.15 ± 0.17 vs. middle-aged: 1.55 ± 0.15 A.U., p < 0.0001), a lower mitochondrial cristae density (young: 23.40 ± 7.12 vs. middle-aged: 13.55 ± 4.10%, p = 0.002) and a reduced subsarcolemmal mitochondrial density (young: 22.39 ± 6.50 vs. middle-aged: 13.92 ± 4.95%, p = 0.005). Linear regression analysis showed that 87% of the variance associated with maximal oxygen uptake could be explained by skeletal muscle mitochondrial fragmentation and cristae density alone, whereas subsarcolemmal mitochondrial density was positively associated with the capacity for oxygen extraction during exercise. Intramuscular lipid accumulation was positively associated with mitochondrial fragmentation and negatively associated with cristae density. Collectively, our work highlights the critical role of skeletal muscle mitochondria in age-associated declines in physical function.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.