Interannual variations in grassland carbon fluxes and attribution of influencing factors in Qilian Mountains, China.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-12-20 Epub Date: 2024-11-29 DOI:10.1016/j.scitotenv.2024.177786
Qingqing Hou, Kaikai Ma, Xiaojun Yu
{"title":"Interannual variations in grassland carbon fluxes and attribution of influencing factors in Qilian Mountains, China.","authors":"Qingqing Hou, Kaikai Ma, Xiaojun Yu","doi":"10.1016/j.scitotenv.2024.177786","DOIUrl":null,"url":null,"abstract":"<p><p>Clarifying the driving factors of grassland carbon sequestration is essential for understanding its role in the regional carbon balance. However, there is a lack of studies on the upscaling of carbon flux in the Qilian Mountains (QLMs) and the driving factors of its interannual variation (IAV). Based on long-term eddy covariance observations in the QLMs, this study estimated the net ecosystem CO<sub>2</sub> exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (ER) of the QLMs grassland using four machine learning methods (random forest regression (RF), extremely randomized tree regression (ETR), support vector regression (SVR), and extreme gradient boosting (XGBoost)) to obtain the optimal estimation model. Subsequently, the spatiotemporal variations of GPP, ER, and NEE in the QLMs grasslands were conducted in a comprehensive analysis. The factors influencing the IAV of carbon flux, the contribution of monthly NEE to NEE IAV, and the contribution of different grassland types of NEE to NEE IAV were explored. Our findings revealed that the accuracy and resolution of the grassland carbon flux estimated by the RF method in this study are higher than those of global products. The grassland exhibited a weak carbon sink from 2000 to 2022, with an average NEE of -26.46 ± 6.80 g Cm<sup>-2</sup> yr<sup>-1</sup>, and it acted as a carbon sink from May to September. The spatial distribution pattern of carbon sequestration was \"low in the northwest and high in the southeast\". LAI was the key driving factors of IAV for GPP and ER, while NEE IAV was primarily influenced by precipitation and temperature. Climate and vegetation factors primarily regulated NEE IAV by affecting the GPP and ER of plants, and NEE IAV was primarily driven by GPP. Furthermore, NEE in alpine meadows and alpine steppes dominated the NEE IAV of the entire grassland, and summer NEE contributed the most to the NEE IAV. The results will help us to better understand the carbon cycling mechanism in grassland ecosystems and provide new data support and a theoretical foundation for regional carbon cycling research.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"957 ","pages":"177786"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177786","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Clarifying the driving factors of grassland carbon sequestration is essential for understanding its role in the regional carbon balance. However, there is a lack of studies on the upscaling of carbon flux in the Qilian Mountains (QLMs) and the driving factors of its interannual variation (IAV). Based on long-term eddy covariance observations in the QLMs, this study estimated the net ecosystem CO2 exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (ER) of the QLMs grassland using four machine learning methods (random forest regression (RF), extremely randomized tree regression (ETR), support vector regression (SVR), and extreme gradient boosting (XGBoost)) to obtain the optimal estimation model. Subsequently, the spatiotemporal variations of GPP, ER, and NEE in the QLMs grasslands were conducted in a comprehensive analysis. The factors influencing the IAV of carbon flux, the contribution of monthly NEE to NEE IAV, and the contribution of different grassland types of NEE to NEE IAV were explored. Our findings revealed that the accuracy and resolution of the grassland carbon flux estimated by the RF method in this study are higher than those of global products. The grassland exhibited a weak carbon sink from 2000 to 2022, with an average NEE of -26.46 ± 6.80 g Cm-2 yr-1, and it acted as a carbon sink from May to September. The spatial distribution pattern of carbon sequestration was "low in the northwest and high in the southeast". LAI was the key driving factors of IAV for GPP and ER, while NEE IAV was primarily influenced by precipitation and temperature. Climate and vegetation factors primarily regulated NEE IAV by affecting the GPP and ER of plants, and NEE IAV was primarily driven by GPP. Furthermore, NEE in alpine meadows and alpine steppes dominated the NEE IAV of the entire grassland, and summer NEE contributed the most to the NEE IAV. The results will help us to better understand the carbon cycling mechanism in grassland ecosystems and provide new data support and a theoretical foundation for regional carbon cycling research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信