{"title":"Recent advances in biomimetic nanodelivery systems for the treatment of myocardial ischemia reperfusion injury.","authors":"Xiaojun Bi, Ze Wang, Jingteng He","doi":"10.1016/j.colsurfb.2024.114414","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the treatment of myocardial infarction, a leading cause of global mortality due to irreversible cardiac damage. Biomimetic nanodelivery systems offer promising therapeutic strategies to address MIRI. In this review, we comprehensively investigate the underlying pathophysiological mechanisms of MIRI and discuss recent advances in biomimetic nanodelivery systems including cell membrane-coated nanoparticles, exosomes, and nanoenzymes as innovative approaches for MIRI treatment. We emphasize the advantages and potential of biomimetic strategies in enhancing therapeutic efficacy, assess the preclinical effectiveness of these nanodelivery systems, and discuss the challenges associated with translating these approaches into clinical practice. This paper aims to provide new perspectives on biomimetic strategies for MIRI treatment, contributing to the development of effective drug delivery systems.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"247 ","pages":"114414"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114414","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the treatment of myocardial infarction, a leading cause of global mortality due to irreversible cardiac damage. Biomimetic nanodelivery systems offer promising therapeutic strategies to address MIRI. In this review, we comprehensively investigate the underlying pathophysiological mechanisms of MIRI and discuss recent advances in biomimetic nanodelivery systems including cell membrane-coated nanoparticles, exosomes, and nanoenzymes as innovative approaches for MIRI treatment. We emphasize the advantages and potential of biomimetic strategies in enhancing therapeutic efficacy, assess the preclinical effectiveness of these nanodelivery systems, and discuss the challenges associated with translating these approaches into clinical practice. This paper aims to provide new perspectives on biomimetic strategies for MIRI treatment, contributing to the development of effective drug delivery systems.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.