DNA Hybridization Kinetics Observed at the Single-Molecule Level Using Graphene Near-Field Effects.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-12-12 Epub Date: 2024-12-02 DOI:10.1021/acs.jpca.4c05740
Maria M Soares, João Freitas, Tiago Queirós, Agnes Purwidyantri, Pedro Alpuim, Jana B Nieder
{"title":"DNA Hybridization Kinetics Observed at the Single-Molecule Level Using Graphene Near-Field Effects.","authors":"Maria M Soares, João Freitas, Tiago Queirós, Agnes Purwidyantri, Pedro Alpuim, Jana B Nieder","doi":"10.1021/acs.jpca.4c05740","DOIUrl":null,"url":null,"abstract":"<p><p>We present the development of an advanced sensing platform using a monolayer of graphene functionalized with fluorophore-labeled DNA hairpins to detect the kinetics of single hairpins during the hybridization reaction. The near-field photonic effects of graphene induce a distance-dependent quenching effect on the attached fluorescent labels, resulting in distinct optical signals in response to axial displacements resulting from DNA hybridization. Employing a wide-field Total Internal Reflection Fluorescence (TIRF) optical setup coupled with a sensitive Electron-Multiplying Charge-Coupled Device (EM-CCD) camera, we successfully detected fluorescent signals of individual or a low number of individual DNA hairpins within a low-concentration environment DNA target (tDNA). These signals were used to determine the optical setup's Point Spread Function (PSF) in a novel approach to super-resolution reconstruction. Combining these techniques, the subpixel localization of single hairpin molecules and their respective intensity profiles were extracted, enabling a kinetic assessment of individual DNA hairpins, with estimated unfolding times of approximately 7 s. Observations of kinetic phenomena unveiled intermediate partially hybridized states, extending the time required to unfold the hairpin probes by more than a factor of 2. Furthermore, a developed semiempirical model allowed the conversion of fluorescent signals into fluorophore-graphene distances. At the nanometer scale, we observed a step-like unfolding process characterized by intermittent metastates of unfolding and static periods, which can be attributed to nucleation events in some cases. Our graphene-based sensing platform and optical methodologies can be adopted for further research into the kinetics of different biomolecules under diverse environmental conditions.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"10689-10696"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05740","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present the development of an advanced sensing platform using a monolayer of graphene functionalized with fluorophore-labeled DNA hairpins to detect the kinetics of single hairpins during the hybridization reaction. The near-field photonic effects of graphene induce a distance-dependent quenching effect on the attached fluorescent labels, resulting in distinct optical signals in response to axial displacements resulting from DNA hybridization. Employing a wide-field Total Internal Reflection Fluorescence (TIRF) optical setup coupled with a sensitive Electron-Multiplying Charge-Coupled Device (EM-CCD) camera, we successfully detected fluorescent signals of individual or a low number of individual DNA hairpins within a low-concentration environment DNA target (tDNA). These signals were used to determine the optical setup's Point Spread Function (PSF) in a novel approach to super-resolution reconstruction. Combining these techniques, the subpixel localization of single hairpin molecules and their respective intensity profiles were extracted, enabling a kinetic assessment of individual DNA hairpins, with estimated unfolding times of approximately 7 s. Observations of kinetic phenomena unveiled intermediate partially hybridized states, extending the time required to unfold the hairpin probes by more than a factor of 2. Furthermore, a developed semiempirical model allowed the conversion of fluorescent signals into fluorophore-graphene distances. At the nanometer scale, we observed a step-like unfolding process characterized by intermittent metastates of unfolding and static periods, which can be attributed to nucleation events in some cases. Our graphene-based sensing platform and optical methodologies can be adopted for further research into the kinetics of different biomolecules under diverse environmental conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信