High Catalytic Selectivity of Electron/Proton Dual-Conductive Sulfonated Polyaniline Micropore Encased IrO2 Electrocatalyst by Screening Effect for Oxygen Evolution of Seawater Electrolysis

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhan Shen, Shengqiu Zhao, Fanglin Wu, Hao Zhang, Liyan Zhu, Mingjuan Wu, Tian Tian, Haolin Tang
{"title":"High Catalytic Selectivity of Electron/Proton Dual-Conductive Sulfonated Polyaniline Micropore Encased IrO2 Electrocatalyst by Screening Effect for Oxygen Evolution of Seawater Electrolysis","authors":"Yuhan Shen,&nbsp;Shengqiu Zhao,&nbsp;Fanglin Wu,&nbsp;Hao Zhang,&nbsp;Liyan Zhu,&nbsp;Mingjuan Wu,&nbsp;Tian Tian,&nbsp;Haolin Tang","doi":"10.1002/advs.202412862","DOIUrl":null,"url":null,"abstract":"<p>Acidic seawater electrolysis offers significant advantages in high efficiency and sustainable hydrogen production. However, in situ electrolysis of acidic seawater remains a challenge. Herein, a stable and efficient catalyst (SPTTPAB/IrO<sub>2</sub>) is developed by coating iridium oxide (IrO<sub>2</sub>) with a microporous conjugated organic framework functionalized with sulfonate groups (-SO<sub>3</sub>H) to tackle these challenges. The SPTTPAB/IrO<sub>2</sub> presents a -SO<sub>3</sub>H concentration of 5.62 × 10<sup>−4</sup> mol g<sup>−1</sup> and micropore below 2 nm numbering 1.026 × 10<sup>16</sup> g<sup>−1</sup>. Molecular dynamics simulations demonstrate that the conjugated organic framework blocked 98.62% of Cl<sup>−</sup> in seawater from reaching the catalyst. This structure combines electron conductivity from the organic framework and proton conductivity from -SO<sub>3</sub>H, weakens the Cl<sup>−</sup> adsorption, and suppresses metal-chlorine coupling, thus enhancing the catalytic activity and selectivity. As a result, the overpotential for the oxygen evolution reaction (OER) is only 283 mV@10 mA cm<sup>−2</sup>, with a Tafel slope of 16.33 mV dec<sup>−1</sup>, which reduces 13.8% and 37.8% compared to commercial IrO<sub>2</sub>, respectively. Impressively, SPTTPAB/IrO<sub>2</sub> exhibits outstanding seawater electrolysis performance, with a 35.3% improvement over IrO<sub>2</sub> to 69 mA cm<sup>−2</sup>@1.9 V, while the degradation rate (0.018 mA h<sup>−1</sup>) is only 24.6% of IrO<sub>2</sub>. This study offers an innovative solution for designing high-performance seawater electrolysis electrocatalysts.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 4","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202412862","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acidic seawater electrolysis offers significant advantages in high efficiency and sustainable hydrogen production. However, in situ electrolysis of acidic seawater remains a challenge. Herein, a stable and efficient catalyst (SPTTPAB/IrO2) is developed by coating iridium oxide (IrO2) with a microporous conjugated organic framework functionalized with sulfonate groups (-SO3H) to tackle these challenges. The SPTTPAB/IrO2 presents a -SO3H concentration of 5.62 × 10−4 mol g−1 and micropore below 2 nm numbering 1.026 × 1016 g−1. Molecular dynamics simulations demonstrate that the conjugated organic framework blocked 98.62% of Cl in seawater from reaching the catalyst. This structure combines electron conductivity from the organic framework and proton conductivity from -SO3H, weakens the Cl adsorption, and suppresses metal-chlorine coupling, thus enhancing the catalytic activity and selectivity. As a result, the overpotential for the oxygen evolution reaction (OER) is only 283 mV@10 mA cm−2, with a Tafel slope of 16.33 mV dec−1, which reduces 13.8% and 37.8% compared to commercial IrO2, respectively. Impressively, SPTTPAB/IrO2 exhibits outstanding seawater electrolysis performance, with a 35.3% improvement over IrO2 to 69 mA cm−2@1.9 V, while the degradation rate (0.018 mA h−1) is only 24.6% of IrO2. This study offers an innovative solution for designing high-performance seawater electrolysis electrocatalysts.

Abstract Image

电子/质子双导电磺化聚苯胺微孔包裹IrO2电催化剂的高催化选择性:海水电解析氧筛选效应
酸性海水电解在高效、可持续制氢方面具有显著优势。然而,酸性海水的原位电解仍然是一个挑战。本文通过在氧化铱(IrO2)表面涂覆磺酸基(-SO3H)的微孔共轭有机骨架,开发了一种稳定高效的催化剂(SPTTPAB/IrO2)来解决这些问题。SPTTPAB/IrO2的-SO3H浓度为5.62 × 10-4 mol g-1, 2 nm以下微孔数为1.026 × 1016 g-1。分子动力学模拟表明,共轭有机骨架能阻挡海水中98.62%的Cl-到达催化剂。这种结构结合了有机骨架的电子导电性和- so3h的质子导电性,减弱了对Cl-的吸附,抑制了金属-氯偶联,从而提高了催化活性和选择性。结果表明,IrO2的析氧反应(OER)过电位仅为283 mV@10 mA cm-2, Tafel斜率为16.33 mV dec1,比商用IrO2分别降低了13.8%和37.8%。令人印象深刻的是,SPTTPAB/IrO2表现出了出色的海水电解性能,比IrO2提高了35.3%,达到69 mA cm-2@1.9 V,而降解率(0.018 mA h-1)仅为IrO2的24.6%。本研究为设计高性能海水电解电催化剂提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
文献相关原料
公司名称
产品信息
阿拉丁
Anhydrous ferric chloride
阿拉丁
Sulfuric acid
阿拉丁
Sodium chloride
阿拉丁
Calcium chloride
阿拉丁
Magnesium chloride
阿拉丁
Petroleum ether
阿拉丁
Dichloroethane
阿拉丁
Anhydrous ethanol
阿拉丁
Anhydrous ferric chloride
阿拉丁
Sulfuric acid
阿拉丁
Sodium chloride
阿拉丁
Calcium chloride
阿拉丁
Magnesium chloride
阿拉丁
Petroleum ether
阿拉丁
Dichloroethane
阿拉丁
Anhydrous ethanol
阿拉丁
Anhydrous ferric chloride
阿拉丁
Sulfuric acid
阿拉丁
Sodium chloride
阿拉丁
Calcium chloride
阿拉丁
Magnesium chloride
阿拉丁
Petroleum ether
阿拉丁
Dichloroethane
阿拉丁
Anhydrous ethanol
阿拉丁
Anhydrous ferric chloride
阿拉丁
Sulfuric acid
阿拉丁
Sodium chloride
阿拉丁
Calcium chloride
阿拉丁
Magnesium chloride
阿拉丁
Petroleum ether
阿拉丁
Dichloroethane
阿拉丁
Anhydrous ethanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信