Manuel Einsiedler, Sanja Š Bogojević, Dušan Milivojević, Sandra Vojnovic, Miloš K Milčić, Veselin Maslak, Anke Matura, Tobias A M Gulder, Jasmina Nikodinovic-Runic
{"title":"Homophenylalanine-derived benzo[1,4]diazepine-2,5-diones are strong bacterial quorum sensing inhibitors.","authors":"Manuel Einsiedler, Sanja Š Bogojević, Dušan Milivojević, Sandra Vojnovic, Miloš K Milčić, Veselin Maslak, Anke Matura, Tobias A M Gulder, Jasmina Nikodinovic-Runic","doi":"10.1039/d4ob01734j","DOIUrl":null,"url":null,"abstract":"<p><p>Benzo[1,4]diazepines show a large diversity of biological activities and are still commonly used as medications against a broad range of diseases. Within our research in the field of chemo-enzymatic alkaloid synthesis, we developed a synthetic route towards close structural relatives, namely benzo[1,4]diazepine-2,5-diones. Possible antimicrobial activities of these substances are barely known up to date. We thus screened a selection of 21 of these compounds and discovered their ability to interfere with bacterial communication (quorum sensing, QS). Derivatisation of the respective substances by a refined synthetic route resulted in a generation of 9 congeners with drastically enhanced activity, setting the stage for the application of benzo[1,4]diazepine-2,5-diones, a formerly under-investigated compound class, as QS modulators. Molecular docking experiments were performed to evaluate potential protein interaction partners - LuxP, LasR, AbaI, and RhlR - which are involved in QS. The results of the docking calculations show a high energy binding site for three analogues, 5q, 15a and 15b, in the autoinducer binding-pocket of LasR, with the position of a fluorine substituent on the diazepine core structure determining the exact spatial orientation of the compounds.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01734j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Benzo[1,4]diazepines show a large diversity of biological activities and are still commonly used as medications against a broad range of diseases. Within our research in the field of chemo-enzymatic alkaloid synthesis, we developed a synthetic route towards close structural relatives, namely benzo[1,4]diazepine-2,5-diones. Possible antimicrobial activities of these substances are barely known up to date. We thus screened a selection of 21 of these compounds and discovered their ability to interfere with bacterial communication (quorum sensing, QS). Derivatisation of the respective substances by a refined synthetic route resulted in a generation of 9 congeners with drastically enhanced activity, setting the stage for the application of benzo[1,4]diazepine-2,5-diones, a formerly under-investigated compound class, as QS modulators. Molecular docking experiments were performed to evaluate potential protein interaction partners - LuxP, LasR, AbaI, and RhlR - which are involved in QS. The results of the docking calculations show a high energy binding site for three analogues, 5q, 15a and 15b, in the autoinducer binding-pocket of LasR, with the position of a fluorine substituent on the diazepine core structure determining the exact spatial orientation of the compounds.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.