{"title":"Biofilm-based immobilized fermentation of engineered Komagataella phaffii for xylanase production.","authors":"Huanqing Niu, Daoguang Zhu, Jing Leng, Zhenyu Wang, Dong Liu, Yong Chen, Pengpeng Yang, Hanjie Ying","doi":"10.1016/j.biortech.2024.131918","DOIUrl":null,"url":null,"abstract":"<p><p>This study presented an immobilized fermentation process of engineered Komagataella phaffii with improved biofilm-forming abilities for continuous xylanase production and provided the first insights into the molecular basis of biofilm-based immobilized fermentation of K. phaffii. Overexpression of PAS_chr2-2_0178 and PAS_FragB_0067 in K. phaffii facilitated biofilm formation with 31.6% and 113.8% increasement, respectively. Subsequently, a biofilm-based immobilized fermentation process was developed for the PAS_FragB_0067-overexpressing strain. Xylanase production over five batches by GS115-0067* was better than that of GS115-xyn, with an overall average of 35.4 % higher enzyme activity. PAS_FragB_0067 overexpression resulted in better adhesion of K. phaffii cells on the carrier, and enhanced biofilms could provide more active cells in the immobilized fermentation process. Transcriptome analysis revealed that overexpression of the biofilm-related gene promoted central carbon metabolism. These findings offer a valuable reference strategy to improve production efficiency of K. phaffii cells in continuous fermentation processes.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131918"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131918","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study presented an immobilized fermentation process of engineered Komagataella phaffii with improved biofilm-forming abilities for continuous xylanase production and provided the first insights into the molecular basis of biofilm-based immobilized fermentation of K. phaffii. Overexpression of PAS_chr2-2_0178 and PAS_FragB_0067 in K. phaffii facilitated biofilm formation with 31.6% and 113.8% increasement, respectively. Subsequently, a biofilm-based immobilized fermentation process was developed for the PAS_FragB_0067-overexpressing strain. Xylanase production over five batches by GS115-0067* was better than that of GS115-xyn, with an overall average of 35.4 % higher enzyme activity. PAS_FragB_0067 overexpression resulted in better adhesion of K. phaffii cells on the carrier, and enhanced biofilms could provide more active cells in the immobilized fermentation process. Transcriptome analysis revealed that overexpression of the biofilm-related gene promoted central carbon metabolism. These findings offer a valuable reference strategy to improve production efficiency of K. phaffii cells in continuous fermentation processes.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.