Shopnil Akash, Sharifa Sultana, Mirza Nafeul Islam, Md Harun Or Rashid, Gbolahan Oladipupo Oduselu, Farah Chafika Kaouche, Emad Rashad Sindi, Gabriel Christian de Farias Morais, Al-Anood M Al-Dies, Jonas Ivan Nobre Oliveira
{"title":"Discovery of Galangin Derivatives as a Potential T-cell Leukemia Virus 1 Protease Inhibitor Through Chemoinformatics Approaches.","authors":"Shopnil Akash, Sharifa Sultana, Mirza Nafeul Islam, Md Harun Or Rashid, Gbolahan Oladipupo Oduselu, Farah Chafika Kaouche, Emad Rashad Sindi, Gabriel Christian de Farias Morais, Al-Anood M Al-Dies, Jonas Ivan Nobre Oliveira","doi":"10.1007/s12013-024-01618-w","DOIUrl":null,"url":null,"abstract":"<p><p>Human T-cell leukemia virus 1 (HTLV-1) has become a life-threatening problem, infecting a significant number of people every year; however, the effective treatment options for this disease are limited. This research focuses on the development of T-cell leukemia virus 1 protease inhibitor modifying galangin, a natural phytochemical with multiple pharmacological properties. However, galangin also has disadvantages, in particular poor bioavailability and solubility. To overcome these limitations, the primary structure of galangin was modified with various functional groups and computational drug design methods were applied to develop potential inhibitors for the human T-cell leukemia virus 1 protease including Lipinski's rule, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), quantum energetic descriptions, molecular docking, electrostatic potential analysis, binding free energy calculations, and molecular dynamics simulations. These techniques are essential in determining the stability and suitability of new drug molecules with target proteins. Molecular docking studies demonstrated that the newly modified galangin derivative exhibits the strongest binding affinity for the HTLV-1 protease. In particular, compounds 02 and 03 showed significantly stronger binding affinities. Subsequently, the two best compounds were subjected to molecular dynamics simulations over 100 ns, which provided insights into the stability and flexibility of the protein-ligand complexes. Principal component analysis, calculation of the binding free energy, and the dynamic cross-correlation matrix during the simulations provided new perspectives on conformational changes within the drug-protein complex. The newly developed galangin derivatives show promising efficacy as potential therapeutics against HTLV-1 protease. The findings of this study suggest that further experimental validation could be pursued to support new drug development in the fight against HTLV-1.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01618-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human T-cell leukemia virus 1 (HTLV-1) has become a life-threatening problem, infecting a significant number of people every year; however, the effective treatment options for this disease are limited. This research focuses on the development of T-cell leukemia virus 1 protease inhibitor modifying galangin, a natural phytochemical with multiple pharmacological properties. However, galangin also has disadvantages, in particular poor bioavailability and solubility. To overcome these limitations, the primary structure of galangin was modified with various functional groups and computational drug design methods were applied to develop potential inhibitors for the human T-cell leukemia virus 1 protease including Lipinski's rule, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET), quantum energetic descriptions, molecular docking, electrostatic potential analysis, binding free energy calculations, and molecular dynamics simulations. These techniques are essential in determining the stability and suitability of new drug molecules with target proteins. Molecular docking studies demonstrated that the newly modified galangin derivative exhibits the strongest binding affinity for the HTLV-1 protease. In particular, compounds 02 and 03 showed significantly stronger binding affinities. Subsequently, the two best compounds were subjected to molecular dynamics simulations over 100 ns, which provided insights into the stability and flexibility of the protein-ligand complexes. Principal component analysis, calculation of the binding free energy, and the dynamic cross-correlation matrix during the simulations provided new perspectives on conformational changes within the drug-protein complex. The newly developed galangin derivatives show promising efficacy as potential therapeutics against HTLV-1 protease. The findings of this study suggest that further experimental validation could be pursued to support new drug development in the fight against HTLV-1.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.