Spatial prediction of human brucellosis susceptibility using an explainable optimized adaptive neuro fuzzy inference system.

IF 2.1 3区 医学 Q2 PARASITOLOGY
Acta tropica Pub Date : 2024-12-01 Epub Date: 2024-11-30 DOI:10.1016/j.actatropica.2024.107483
Ali Jafari, Ali Asghar Alesheikh, Iman Zandi, Aynaz Lotfata
{"title":"Spatial prediction of human brucellosis susceptibility using an explainable optimized adaptive neuro fuzzy inference system.","authors":"Ali Jafari, Ali Asghar Alesheikh, Iman Zandi, Aynaz Lotfata","doi":"10.1016/j.actatropica.2024.107483","DOIUrl":null,"url":null,"abstract":"<p><p>Brucellosis, a zoonotic disease caused by Brucella bacteria, poses significant risks to human, livestock, and wildlife health, alongside economic losses from livestock morbidity and mortality. This study improves Human Brucellosis Susceptibility Mapping (HBSM) by integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) with meta-heuristic algorithms, including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Boruta-XGBoost identified key covariates, while VIF and tolerance tests addressed collinearity, and Shapley additive explanation (SHAP) values enhanced model interpretability. In Mazandaran province, Iran (2012-2018), the hybrid ANFIS-PSO model demonstrated superior performance (RMSE: 0.5076; R<sup>2</sup>: 0.6980). SHAP analysis highlighted mean elevation, NDVI, and relative humidity as the most impactful covariates, while max evaporation and precipitation had minimal influence. ANFIS-based models outperformed Support Vector Regression (SVR), offering a robust framework for brucellosis control. This approach enables effective interventions and resource allocation, with potential for improvement through advanced algorithms and greater interpretability.</p>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":" ","pages":"107483"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.actatropica.2024.107483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brucellosis, a zoonotic disease caused by Brucella bacteria, poses significant risks to human, livestock, and wildlife health, alongside economic losses from livestock morbidity and mortality. This study improves Human Brucellosis Susceptibility Mapping (HBSM) by integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) with meta-heuristic algorithms, including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Boruta-XGBoost identified key covariates, while VIF and tolerance tests addressed collinearity, and Shapley additive explanation (SHAP) values enhanced model interpretability. In Mazandaran province, Iran (2012-2018), the hybrid ANFIS-PSO model demonstrated superior performance (RMSE: 0.5076; R2: 0.6980). SHAP analysis highlighted mean elevation, NDVI, and relative humidity as the most impactful covariates, while max evaporation and precipitation had minimal influence. ANFIS-based models outperformed Support Vector Regression (SVR), offering a robust framework for brucellosis control. This approach enables effective interventions and resource allocation, with potential for improvement through advanced algorithms and greater interpretability.

利用可解释的优化自适应神经模糊推理系统对人类布鲁氏菌病易感性的空间预测。
布鲁氏菌病是一种由布鲁氏菌引起的人畜共患疾病,对人类、牲畜和野生动物的健康构成重大风险,并造成牲畜发病率和死亡率带来的经济损失。本研究将自适应神经模糊推理系统(ANFIS)与包括遗传算法(GA)和粒子群优化(PSO)在内的元启发式算法相结合,改进了人类布鲁氏菌病易感性图谱(HBSM)。Boruta-XGBoost确定了关键的协变量,而VIF和容差测试解决了共线性问题,Shapley加性解释(SHAP)值增强了模型的可解释性。在伊朗Mazandaran省(2012-2018),混合anfiss - pso模型表现出较好的性能(RMSE: 0.5076;R2: 0.6980)。SHAP分析强调,平均高程、NDVI和相对湿度是影响最大的协变量,而最大蒸发量和降水的影响最小。基于anfiss的模型优于支持向量回归(SVR),为布鲁氏菌病控制提供了强大的框架。这种方法可以实现有效的干预和资源分配,并有可能通过先进的算法和更大的可解释性进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信