P A Pérez-Ferrer, M Ashraf, M Rodrigues, J Troncoso, M K Nishiguchi
{"title":"Genetic Variation in the Atlantic Bobtail Squid-Vibrio Symbiosis From the Galician Rías.","authors":"P A Pérez-Ferrer, M Ashraf, M Rodrigues, J Troncoso, M K Nishiguchi","doi":"10.1111/mec.17596","DOIUrl":null,"url":null,"abstract":"<p><p>Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure of Sepiola atlantica (Cephalopoda: Sepiolidae) and their Vibrio symbionts (V. fischeri and V. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep-sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for both S. atlantica and Vibrio bacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast, Vibrio symbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid-Vibrio association, abiotic factors can be a major selective force for determining population structure for one of the partners.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17596"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17596","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure of Sepiola atlantica (Cephalopoda: Sepiolidae) and their Vibrio symbionts (V. fischeri and V. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep-sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for both S. atlantica and Vibrio bacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast, Vibrio symbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid-Vibrio association, abiotic factors can be a major selective force for determining population structure for one of the partners.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms