High-precision Sm isotope analysis by thermal ionisation mass spectrometry for large meteorite samples (>1 g).

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Paul Frossard, James M J Ball, Maria Schönbächler
{"title":"High-precision Sm isotope analysis by thermal ionisation mass spectrometry for large meteorite samples (>1 g).","authors":"Paul Frossard, James M J Ball, Maria Schönbächler","doi":"10.1039/d4ja00301b","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a new procedure for high-precision Sm isotope analysis by thermal ionisation mass spectrometry (TIMS) for geological samples. A four-step chemical separation scheme results in sharp separation of Sm and Nd from the same sample aliquot. The first step utilises anion exchange resin to remove Fe from the sample solution. Two different liquid-liquid extraction resins are then used to isolate rare-earth elements (TRU-Spec) and purify Sm from Nd (DGA). Fractionation occurs on the DGA resin due to the nuclear field shift effect, but this is negligible if yields greater than 70% are achieved. Different analytical setups were tested to ascertain their ionisation efficiencies on TIMS. The effect of activators composed of Pt and Ta was tested on single Re filaments but the conventional double Re filament assembly provided efficient ionisation and more stable ion beams. The determination of nucleosynthetic isotope variations requires high precision for all Sm isotope ratios. We aimed to improve the precision on the scarce <sup>144</sup>Sm isotope (3% of all Sm). Static, multistatic and dynamic methods were tested. Isotope ratios were normalised to both <sup>147</sup>Sm/<sup>152</sup>Sm and <sup>152</sup>Sm/<sup>148</sup>Sm for comparison. The dynamic methods failed to provide better precision on ratios involving <sup>144</sup>Sm, whereas the multistatic method yielded improved precisions between 13 and 22 ppm (twice the standard deviation, 2 SD) on the <sup>144</sup>Sm/<sup>152</sup>Sm ratio. Synthetic standards have variable Sm isotope compositions, thus requiring systematic and precise characterisation against terrestrial samples. Analyses conducted using this new procedure yielded high-precision values which were consistent with literature data for an array of terrestrial rock standards and the meteorite Allende.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ja00301b","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new procedure for high-precision Sm isotope analysis by thermal ionisation mass spectrometry (TIMS) for geological samples. A four-step chemical separation scheme results in sharp separation of Sm and Nd from the same sample aliquot. The first step utilises anion exchange resin to remove Fe from the sample solution. Two different liquid-liquid extraction resins are then used to isolate rare-earth elements (TRU-Spec) and purify Sm from Nd (DGA). Fractionation occurs on the DGA resin due to the nuclear field shift effect, but this is negligible if yields greater than 70% are achieved. Different analytical setups were tested to ascertain their ionisation efficiencies on TIMS. The effect of activators composed of Pt and Ta was tested on single Re filaments but the conventional double Re filament assembly provided efficient ionisation and more stable ion beams. The determination of nucleosynthetic isotope variations requires high precision for all Sm isotope ratios. We aimed to improve the precision on the scarce 144Sm isotope (3% of all Sm). Static, multistatic and dynamic methods were tested. Isotope ratios were normalised to both 147Sm/152Sm and 152Sm/148Sm for comparison. The dynamic methods failed to provide better precision on ratios involving 144Sm, whereas the multistatic method yielded improved precisions between 13 and 22 ppm (twice the standard deviation, 2 SD) on the 144Sm/152Sm ratio. Synthetic standards have variable Sm isotope compositions, thus requiring systematic and precise characterisation against terrestrial samples. Analyses conducted using this new procedure yielded high-precision values which were consistent with literature data for an array of terrestrial rock standards and the meteorite Allende.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信