Photothermally-activated suspended aerogel triggers a biphasic interface reaction for high-efficiency and additive-free hydrogen generation.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qian Zhang, Bo Jiang, Yuming Gao, Lin Li, Dawei Tang
{"title":"Photothermally-activated suspended aerogel triggers a biphasic interface reaction for high-efficiency and additive-free hydrogen generation.","authors":"Qian Zhang, Bo Jiang, Yuming Gao, Lin Li, Dawei Tang","doi":"10.1039/d4mh00964a","DOIUrl":null,"url":null,"abstract":"<p><p>The need for a sustainable hydrogen supply has sparked significant efforts to develop effective liquid hydrogen carriers with high hydrogen content that can be safely stored and undergo controlled hydrogen release. However, a major challenge lies in the ultralow hydrogen evolution rate caused by the direct dehydrogenation of liquid hydrogen carriers. Conventionally, accelerant additives are employed to improve the dehydrogenation rate, but this strategy inevitably sacrifices the hydrogen storage density. Therefore, achieving high-efficiency hydrogen release and high storage density remains a daunting task. Herein, we develop an innovative photothermally-activated suspended biphasic reaction strategy, which absorbs solar radiation and re-radiates infrared photons to induce photothermal evaporation and <i>in situ</i> dehydrogenation of liquid hydrogen carriers, fundamentally circumventing the employment of additives. Furthermore, by leveraging this phase transition-induced biphasic reaction design, the strategy improves the required reaction temperature and drastically lowers hydrogen transport resistance. Therefore, an impressive hydrogen evolution rate of 386 mmol g<sup>-1</sup> h<sup>-1</sup> is achieved from pure formic acid with an ultrahigh hydrogen storage density of 53 g L<sup>-1</sup>, representing a threefold improvement in rate compared to state-of-the-art strategies. Our approach introduces a fresh perspective for the dehydrogenation of liquid hydrogen carriers, encompassing formic acid, hydrazine hydrate, and so on, and concurrently guarantees exceptional hydrogen release capabilities and excellent hydrogen storage density.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00964a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The need for a sustainable hydrogen supply has sparked significant efforts to develop effective liquid hydrogen carriers with high hydrogen content that can be safely stored and undergo controlled hydrogen release. However, a major challenge lies in the ultralow hydrogen evolution rate caused by the direct dehydrogenation of liquid hydrogen carriers. Conventionally, accelerant additives are employed to improve the dehydrogenation rate, but this strategy inevitably sacrifices the hydrogen storage density. Therefore, achieving high-efficiency hydrogen release and high storage density remains a daunting task. Herein, we develop an innovative photothermally-activated suspended biphasic reaction strategy, which absorbs solar radiation and re-radiates infrared photons to induce photothermal evaporation and in situ dehydrogenation of liquid hydrogen carriers, fundamentally circumventing the employment of additives. Furthermore, by leveraging this phase transition-induced biphasic reaction design, the strategy improves the required reaction temperature and drastically lowers hydrogen transport resistance. Therefore, an impressive hydrogen evolution rate of 386 mmol g-1 h-1 is achieved from pure formic acid with an ultrahigh hydrogen storage density of 53 g L-1, representing a threefold improvement in rate compared to state-of-the-art strategies. Our approach introduces a fresh perspective for the dehydrogenation of liquid hydrogen carriers, encompassing formic acid, hydrazine hydrate, and so on, and concurrently guarantees exceptional hydrogen release capabilities and excellent hydrogen storage density.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信