Light-regulated pyro-phototronic effects in a perovskite Cs2SnI6-reinforced ferroelectric polymer hybrid nanostructure.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zinnia Mallick, Sudip Naskar, Shanker Ram, Dipankar Mandal
{"title":"Light-regulated pyro-phototronic effects in a perovskite Cs<sub>2</sub>SnI<sub>6</sub>-reinforced ferroelectric polymer hybrid nanostructure.","authors":"Zinnia Mallick, Sudip Naskar, Shanker Ram, Dipankar Mandal","doi":"10.1039/d4mh01198h","DOIUrl":null,"url":null,"abstract":"<p><p>The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride-<i>co</i>-trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, Cs<sub>2</sub>SnI<sub>6</sub>, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features. Cs<sub>2</sub>SnI<sub>6</sub> embodied in small crystallites therein is distorted in a non-centrosymmetric class of a rhomboid crystal structure (a new phase) rather than a well-known centrosymmetric face-centred cubic (fcc) phase. It boosts the emerging phototronic properties. A systematic study of the bulk heterojunction reveals the four-stage pyro-phototronic response of transient photocurrent under visible light illumination of a solar simulator (intensity ∼100 mW cm<sup>-2</sup>). Illumination at a frequency of 0.025 Hz induces a temporal temperature change, Δ<i>T</i> → 3.1 K, in the system, leading to induced pyroelectricity in an integrated circuit. The rise time and response time for the heterojunction are observed as ∼326 ms and ∼225 ms, respectively. The output pyro-phototronic current increases as Δ<i>T</i> increases in an on-off cycle. As a result, the integrated pyro-phototronic effect can be utilized to empower optoelectronic devices and harvest stray 'thermal energy' for running small energy devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01198h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, Cs2SnI6, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features. Cs2SnI6 embodied in small crystallites therein is distorted in a non-centrosymmetric class of a rhomboid crystal structure (a new phase) rather than a well-known centrosymmetric face-centred cubic (fcc) phase. It boosts the emerging phototronic properties. A systematic study of the bulk heterojunction reveals the four-stage pyro-phototronic response of transient photocurrent under visible light illumination of a solar simulator (intensity ∼100 mW cm-2). Illumination at a frequency of 0.025 Hz induces a temporal temperature change, ΔT → 3.1 K, in the system, leading to induced pyroelectricity in an integrated circuit. The rise time and response time for the heterojunction are observed as ∼326 ms and ∼225 ms, respectively. The output pyro-phototronic current increases as ΔT increases in an on-off cycle. As a result, the integrated pyro-phototronic effect can be utilized to empower optoelectronic devices and harvest stray 'thermal energy' for running small energy devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信