Self-Assembled Nanoparticles with Well-Defined Oligosaccharide Promote Osteogenesis by Regulating Golgi Stress Response.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Pingping Niu, Liman Zhao, Jing Yang, Yanan Ding, Xiaoqiao Xu, Sijin Li, Lige Song, Guosong Chen, Yao Sun
{"title":"Self-Assembled Nanoparticles with Well-Defined Oligosaccharide Promote Osteogenesis by Regulating Golgi Stress Response.","authors":"Pingping Niu, Liman Zhao, Jing Yang, Yanan Ding, Xiaoqiao Xu, Sijin Li, Lige Song, Guosong Chen, Yao Sun","doi":"10.1002/adhm.202402976","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis, a prevalent disease characterized by low bone density and increased fracture risk, poses significant health challenges for the elderly. Current treatments offer short-term benefits but are limited by long-term efficacy and adverse effects, highlighting the need for new strategies. Chondroitin sulfate polysaccharides (CS), a major component of the bone matrix, are crucial for bone and cartilage health. However, their role in osteoporosis is understudied due to the heterogeneity of natural CS. we found reduced CS levels in osteoporosis patients and developed CS4-NP, a self-assembled tetrasaccharide nanoparticle that mimics CS's structure. CS4-NP, which efficiently delivers the active CS4, significantly improves bone mass in ovariectomized osteoporosis models. It activates the Activating Transcription Factor 4-Cystathionine gamma-Lyase signaling axis in pre-osteoblasts, enhancing osteogenesis. our findings suggest that CS4-NP, an oligosaccharide-based nanomaterial, could address the limitations of current treatments and provide a viable strategy for osteoporosis.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402976"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402976","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis, a prevalent disease characterized by low bone density and increased fracture risk, poses significant health challenges for the elderly. Current treatments offer short-term benefits but are limited by long-term efficacy and adverse effects, highlighting the need for new strategies. Chondroitin sulfate polysaccharides (CS), a major component of the bone matrix, are crucial for bone and cartilage health. However, their role in osteoporosis is understudied due to the heterogeneity of natural CS. we found reduced CS levels in osteoporosis patients and developed CS4-NP, a self-assembled tetrasaccharide nanoparticle that mimics CS's structure. CS4-NP, which efficiently delivers the active CS4, significantly improves bone mass in ovariectomized osteoporosis models. It activates the Activating Transcription Factor 4-Cystathionine gamma-Lyase signaling axis in pre-osteoblasts, enhancing osteogenesis. our findings suggest that CS4-NP, an oligosaccharide-based nanomaterial, could address the limitations of current treatments and provide a viable strategy for osteoporosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信