Glucose-Sensitive Biohybrid Roots for Supercapacitive Bioanodes.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-12-16 Epub Date: 2024-12-03 DOI:10.1021/acsabm.4c01425
Gwennaël Dufil, Julie Pham, Chiara Diacci, Yohann Daguerre, Daniele Mantione, Samia Zrig, Torgny Näsholm, Mary J Donahue, Vasileios K Oikonomou, Vincent Noël, Benoit Piro, Eleni Stavrinidou
{"title":"Glucose-Sensitive Biohybrid Roots for Supercapacitive Bioanodes.","authors":"Gwennaël Dufil, Julie Pham, Chiara Diacci, Yohann Daguerre, Daniele Mantione, Samia Zrig, Torgny Näsholm, Mary J Donahue, Vasileios K Oikonomou, Vincent Noël, Benoit Piro, Eleni Stavrinidou","doi":"10.1021/acsabm.4c01425","DOIUrl":null,"url":null,"abstract":"<p><p>Plants as living organisms, as well as their material-structural components and physiological processes, offer promising elements for developing more sustainable technologies. Previously, we demonstrated that plants could acquire electronic functionality, as their enzymatic activity catalyzes the in vivo polymerization of water-soluble conjugated oligomers. We then leveraged plant-integrated conductors to develop biohybrid energy storage devices and circuits. Here, we extend the concept of plant biohybrids to develop plant-based energy-harvesting devices. We demonstrate plant biohybrids with modified roots that can convert common root exudates, such as glucose, to electricity. To do so, we developed a simple one-step approach to convert living roots to glucose-sensitive electrodes by dipping the root in a solution of the conjugated trimer ETE-S and the enzyme glucose dehydrogenase flavin adenine dinucleotide. The biohybrid device responds to glucose concentrations down to 100 μM while it saturates at 100 mM. The performance of our approach was compared with a classic mediator-based glucose biosensor functionalization method. While the latter method increases the stability of the sensor, it results in less sensitivity and damages the root structure. Finally, we show that glucose oxidation can be combined with the volumetric capacitance of p(ETE-S)-forming devices that generate current in the presence of glucose and store it in the same biohybrid root electrodes. The plant biohybrid devices open a pathway to biologically integrated technology that finds application in low-power devices, for example, sensors for agriculture or the environment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8632-8641"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Plants as living organisms, as well as their material-structural components and physiological processes, offer promising elements for developing more sustainable technologies. Previously, we demonstrated that plants could acquire electronic functionality, as their enzymatic activity catalyzes the in vivo polymerization of water-soluble conjugated oligomers. We then leveraged plant-integrated conductors to develop biohybrid energy storage devices and circuits. Here, we extend the concept of plant biohybrids to develop plant-based energy-harvesting devices. We demonstrate plant biohybrids with modified roots that can convert common root exudates, such as glucose, to electricity. To do so, we developed a simple one-step approach to convert living roots to glucose-sensitive electrodes by dipping the root in a solution of the conjugated trimer ETE-S and the enzyme glucose dehydrogenase flavin adenine dinucleotide. The biohybrid device responds to glucose concentrations down to 100 μM while it saturates at 100 mM. The performance of our approach was compared with a classic mediator-based glucose biosensor functionalization method. While the latter method increases the stability of the sensor, it results in less sensitivity and damages the root structure. Finally, we show that glucose oxidation can be combined with the volumetric capacitance of p(ETE-S)-forming devices that generate current in the presence of glucose and store it in the same biohybrid root electrodes. The plant biohybrid devices open a pathway to biologically integrated technology that finds application in low-power devices, for example, sensors for agriculture or the environment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信