Simulation-based generation and analysis of multidimensional future scenarios with time series clustering

Patrick Steinmann, Koen van der Zwet, Bas Keijser
{"title":"Simulation-based generation and analysis of multidimensional future scenarios with time series clustering","authors":"Patrick Steinmann,&nbsp;Koen van der Zwet,&nbsp;Bas Keijser","doi":"10.1002/ffo2.194","DOIUrl":null,"url":null,"abstract":"<p>Scenarios are commonly used for decision support and future exploration of complex systems. Using simulation models to generate these scenarios, called scenario discovery, has received increased attention in the literature as a principled method of capturing the uncertainty, complexity, and dynamics inherent in such problems. However, current methods of incorporating dynamics into scenario discovery are limited to a single outcome of interest. Furthermore, there is little work on the post-generation evaluation of the generated scenarios. In this work, we extend scenario discovery to multiple dynamic outcomes of interest, and present a number of visual and statistical approaches for evaluating the resulting scenario sets. These innovations make model-based scenario generation more widely applicable in decision support for complex societal problems, and open the door to multimethod scenario generation combining model-based and model-free methods such as Intuitive Logics or futures cones.</p>","PeriodicalId":100567,"journal":{"name":"FUTURES & FORESIGHT SCIENCE","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ffo2.194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUTURES & FORESIGHT SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffo2.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scenarios are commonly used for decision support and future exploration of complex systems. Using simulation models to generate these scenarios, called scenario discovery, has received increased attention in the literature as a principled method of capturing the uncertainty, complexity, and dynamics inherent in such problems. However, current methods of incorporating dynamics into scenario discovery are limited to a single outcome of interest. Furthermore, there is little work on the post-generation evaluation of the generated scenarios. In this work, we extend scenario discovery to multiple dynamic outcomes of interest, and present a number of visual and statistical approaches for evaluating the resulting scenario sets. These innovations make model-based scenario generation more widely applicable in decision support for complex societal problems, and open the door to multimethod scenario generation combining model-based and model-free methods such as Intuitive Logics or futures cones.

Abstract Image

基于仿真的基于时间序列聚类的多维未来情景生成与分析
场景通常用于复杂系统的决策支持和未来探索。使用模拟模型来生成这些场景,称为场景发现,作为捕获此类问题中固有的不确定性、复杂性和动态性的原则方法,在文献中受到越来越多的关注。然而,目前将动态纳入场景发现的方法仅限于单个感兴趣的结果。此外,关于生成情景的生成后评估的工作很少。在这项工作中,我们将场景发现扩展到多个感兴趣的动态结果,并提出了许多视觉和统计方法来评估结果场景集。这些创新使得基于模型的场景生成更广泛地应用于复杂社会问题的决策支持,并为结合基于模型和无模型方法(如直觉逻辑或期货锥)的多方法场景生成打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信