Spatial Variability of Dissolved Cobalt in the Indian Ocean Waters: Contrasting Behavior in the Arabian Sea, the Bay of Bengal and the Southern Sector of the Indian Ocean
{"title":"Spatial Variability of Dissolved Cobalt in the Indian Ocean Waters: Contrasting Behavior in the Arabian Sea, the Bay of Bengal and the Southern Sector of the Indian Ocean","authors":"Nirmalya Malla, Sunil Kumar Singh","doi":"10.1029/2024GB008291","DOIUrl":null,"url":null,"abstract":"<p>The present study explored the dynamics of total dissolved Cobalt (dCo) in the Indian Ocean, revealing different distribution patterns in the different sub-basins, nutrient-type in the southern sector, hybrid-type in the Arabian Sea to scavenged-type in the Bay of Bengal (BoB). The dCo in the coastal water of the Arabian Sea displays elevated (0.12–0.13 nmol L<sup>−</sup><sup>1</sup>) abundance and diminishes gradually toward the central Arabian Sea. Similarly, in the BoB, dCo concentrations are notably higher in the northern region (0.11 nmol L<sup>−1</sup>) and gradually decrease toward the south (0.03 nmol L<sup>−1</sup> at 5°N). The Arabian Sea with higher biological uptake and remineralization in the oxycline supports a higher abundance of dCo in the intermediate oxygen minimum zone (OMZ), much a like the OMZs of the Atlantic and the Pacific Oceans. The influence of the phytoplankton community shift and uptake on the dCo distribution in the Indian Ocean could be inferred from the association between Co and phosphate in the photic waters. Our observation demonstrates a scavenging type dCo profile in the BoB due to its higher riverine as well as dust inputs in addition to its supply from continental shelf sediments. Such a higher concentration of dCo in the surface waters of the northern BoB masks the dCo signal associated with nitrite maxima. dCo gets removed by its scavenging with Mn oxides at deeper depths, as reflected by higher particulate Co in the BoB. Subduction fluids contribute significantly to the dCo inventory of the deep water in the Indian Ocean near the Java-Sumatra subduction zone.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008291","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The present study explored the dynamics of total dissolved Cobalt (dCo) in the Indian Ocean, revealing different distribution patterns in the different sub-basins, nutrient-type in the southern sector, hybrid-type in the Arabian Sea to scavenged-type in the Bay of Bengal (BoB). The dCo in the coastal water of the Arabian Sea displays elevated (0.12–0.13 nmol L−1) abundance and diminishes gradually toward the central Arabian Sea. Similarly, in the BoB, dCo concentrations are notably higher in the northern region (0.11 nmol L−1) and gradually decrease toward the south (0.03 nmol L−1 at 5°N). The Arabian Sea with higher biological uptake and remineralization in the oxycline supports a higher abundance of dCo in the intermediate oxygen minimum zone (OMZ), much a like the OMZs of the Atlantic and the Pacific Oceans. The influence of the phytoplankton community shift and uptake on the dCo distribution in the Indian Ocean could be inferred from the association between Co and phosphate in the photic waters. Our observation demonstrates a scavenging type dCo profile in the BoB due to its higher riverine as well as dust inputs in addition to its supply from continental shelf sediments. Such a higher concentration of dCo in the surface waters of the northern BoB masks the dCo signal associated with nitrite maxima. dCo gets removed by its scavenging with Mn oxides at deeper depths, as reflected by higher particulate Co in the BoB. Subduction fluids contribute significantly to the dCo inventory of the deep water in the Indian Ocean near the Java-Sumatra subduction zone.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.