Dario Pitocco, Duaa Hatem, Alessia Riente, Michele Maria De Giulio, Alessandro Rizzi, Alessio Abeltino, Cassandra Serantoni, Linda Tartaglione, Emanuele Rizzo, Lorenzo Lucacchini Paoli, Marco De Spirito, Giuseppe Maulucci
{"title":"Evaluating Red Blood Cells' Membrane Fluidity in Diabetes: Insights, Mechanisms, and Future Aspects","authors":"Dario Pitocco, Duaa Hatem, Alessia Riente, Michele Maria De Giulio, Alessandro Rizzi, Alessio Abeltino, Cassandra Serantoni, Linda Tartaglione, Emanuele Rizzo, Lorenzo Lucacchini Paoli, Marco De Spirito, Giuseppe Maulucci","doi":"10.1002/dmrr.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>This review evaluates the mechanisms underlying red blood cell (RBC) membrane fluidity changes in diabetes mellitus (DM) and explores strategies to assess and address these alterations. Emphasis is placed on developing a comprehensive index for membrane fluidity to improve monitoring and management in diabetic patients.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>We reviewed current literature on RBC membrane fluidity, focussing on lipid composition, glycation, oxidative stress, and lipid transport alterations in diabetic patients. Key methodologies include lipidomics, multi-scale probe assessment, and machine learning integration for standardized fluidity measurement.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Diabetic RBCs exhibit increased membrane fluidity, primarily due to oxidative stress, increased glycation, and dysregulated lipid composition. These alterations contribute to vascular complications and impair RBC functionality. Assessing membrane composition as a nutritional marker provides insights into the metabolic impacts of glycaemic management.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>There is a critical need for a unified and comprehensive membrane fluidity index in DM, which could support personalised interventions through dietary, medicinal, and lifestyle modifications. Future research should prioritise standardising measurement techniques and integrating lipidomic data with machine learning for predictive modelling, aiming to enhance clinical outcomes for diabetic patients.</p>\n </section>\n </div>","PeriodicalId":11335,"journal":{"name":"Diabetes/Metabolism Research and Reviews","volume":"41 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dmrr.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes/Metabolism Research and Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dmrr.70011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
This review evaluates the mechanisms underlying red blood cell (RBC) membrane fluidity changes in diabetes mellitus (DM) and explores strategies to assess and address these alterations. Emphasis is placed on developing a comprehensive index for membrane fluidity to improve monitoring and management in diabetic patients.
Materials and Methods
We reviewed current literature on RBC membrane fluidity, focussing on lipid composition, glycation, oxidative stress, and lipid transport alterations in diabetic patients. Key methodologies include lipidomics, multi-scale probe assessment, and machine learning integration for standardized fluidity measurement.
Results
Diabetic RBCs exhibit increased membrane fluidity, primarily due to oxidative stress, increased glycation, and dysregulated lipid composition. These alterations contribute to vascular complications and impair RBC functionality. Assessing membrane composition as a nutritional marker provides insights into the metabolic impacts of glycaemic management.
Conclusions
There is a critical need for a unified and comprehensive membrane fluidity index in DM, which could support personalised interventions through dietary, medicinal, and lifestyle modifications. Future research should prioritise standardising measurement techniques and integrating lipidomic data with machine learning for predictive modelling, aiming to enhance clinical outcomes for diabetic patients.
期刊介绍:
Diabetes/Metabolism Research and Reviews is a premier endocrinology and metabolism journal esteemed by clinicians and researchers alike. Encompassing a wide spectrum of topics including diabetes, endocrinology, metabolism, and obesity, the journal eagerly accepts submissions ranging from clinical studies to basic and translational research, as well as reviews exploring historical progress, controversial issues, and prominent opinions in the field. Join us in advancing knowledge and understanding in the realm of diabetes and metabolism.