Targeting HLA-E in Lung Cancer: The Therapeutic Potential of IRF5-Engineered M1-Macrophage-Derived Exosomes

IF 1.9 4区 医学 Q3 RESPIRATORY SYSTEM
Xuqin Feng, Xiangyu Lai, Mingming Zhou, Jun Bie, Tingting Li, Dan Wang, Silin Chen, Xin Hu, Chunyu Wang, Peng Xu
{"title":"Targeting HLA-E in Lung Cancer: The Therapeutic Potential of IRF5-Engineered M1-Macrophage-Derived Exosomes","authors":"Xuqin Feng,&nbsp;Xiangyu Lai,&nbsp;Mingming Zhou,&nbsp;Jun Bie,&nbsp;Tingting Li,&nbsp;Dan Wang,&nbsp;Silin Chen,&nbsp;Xin Hu,&nbsp;Chunyu Wang,&nbsp;Peng Xu","doi":"10.1111/crj.70035","DOIUrl":null,"url":null,"abstract":"<p>Immunotherapy is a pivotal approach in the treatment of lung cancer. Although HLA-E is a potential target for tumor immunotherapy, its role in lung cancer remains unclear. Previous studies have identified the transcription factor IRF5 as a characteristic gene of M1-like macrophages, highlighting its crucial role in promoting antitumor immune responses. In this study, we developed an engineered M1-like macrophage exosomes expressing IRF5 (IRF5 M1-exos) and demonstrated their ability to inhibit proliferation, migration, and invasion of lung cancer cells. Moreover, our experiments using a nude mouse model revealed that IRF5 M1-exos exerted potent therapeutic effects by effectively suppressing tumor growth. Notably, the mechanism by which IRF5 exerts its antitumor function through HLA-E regulation in lung cancer has not been fully elucidated. Here, we identified HLA-E as a downstream target gene of IRF5 and demonstrated that the overexpression of HLA-E can counteract the tumor-promoting effects induced by si-IRF5 M1-exos. These results suggest that M1 macrophage-derived exosomes, enriched with the transcription factor IRF5, exhibit potent antitumor activity by up-regulating HLA-E in lung cancer cells. Therefore, IRF5 M1-exos represent an attractive therapeutic strategy for lung cancer.</p>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/crj.70035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.70035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy is a pivotal approach in the treatment of lung cancer. Although HLA-E is a potential target for tumor immunotherapy, its role in lung cancer remains unclear. Previous studies have identified the transcription factor IRF5 as a characteristic gene of M1-like macrophages, highlighting its crucial role in promoting antitumor immune responses. In this study, we developed an engineered M1-like macrophage exosomes expressing IRF5 (IRF5 M1-exos) and demonstrated their ability to inhibit proliferation, migration, and invasion of lung cancer cells. Moreover, our experiments using a nude mouse model revealed that IRF5 M1-exos exerted potent therapeutic effects by effectively suppressing tumor growth. Notably, the mechanism by which IRF5 exerts its antitumor function through HLA-E regulation in lung cancer has not been fully elucidated. Here, we identified HLA-E as a downstream target gene of IRF5 and demonstrated that the overexpression of HLA-E can counteract the tumor-promoting effects induced by si-IRF5 M1-exos. These results suggest that M1 macrophage-derived exosomes, enriched with the transcription factor IRF5, exhibit potent antitumor activity by up-regulating HLA-E in lung cancer cells. Therefore, IRF5 M1-exos represent an attractive therapeutic strategy for lung cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Respiratory Journal
Clinical Respiratory Journal 医学-呼吸系统
CiteScore
3.70
自引率
0.00%
发文量
104
审稿时长
>12 weeks
期刊介绍: Overview Effective with the 2016 volume, this journal will be published in an online-only format. Aims and Scope The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic. We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including: Asthma Allergy COPD Non-invasive ventilation Sleep related breathing disorders Interstitial lung diseases Lung cancer Clinical genetics Rhinitis Airway and lung infection Epidemiology Pediatrics CRJ provides a fast-track service for selected Phase II and Phase III trial studies. Keywords Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease, Abstracting and Indexing Information Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Embase (Elsevier) Health & Medical Collection (ProQuest) Health Research Premium Collection (ProQuest) HEED: Health Economic Evaluations Database (Wiley-Blackwell) Hospital Premium Collection (ProQuest) Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) ProQuest Central (ProQuest) Science Citation Index Expanded (Clarivate Analytics) SCOPUS (Elsevier)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信