Xuqin Feng, Xiangyu Lai, Mingming Zhou, Jun Bie, Tingting Li, Dan Wang, Silin Chen, Xin Hu, Chunyu Wang, Peng Xu
{"title":"Targeting HLA-E in Lung Cancer: The Therapeutic Potential of IRF5-Engineered M1-Macrophage-Derived Exosomes","authors":"Xuqin Feng, Xiangyu Lai, Mingming Zhou, Jun Bie, Tingting Li, Dan Wang, Silin Chen, Xin Hu, Chunyu Wang, Peng Xu","doi":"10.1111/crj.70035","DOIUrl":null,"url":null,"abstract":"<p>Immunotherapy is a pivotal approach in the treatment of lung cancer. Although HLA-E is a potential target for tumor immunotherapy, its role in lung cancer remains unclear. Previous studies have identified the transcription factor IRF5 as a characteristic gene of M1-like macrophages, highlighting its crucial role in promoting antitumor immune responses. In this study, we developed an engineered M1-like macrophage exosomes expressing IRF5 (IRF5 M1-exos) and demonstrated their ability to inhibit proliferation, migration, and invasion of lung cancer cells. Moreover, our experiments using a nude mouse model revealed that IRF5 M1-exos exerted potent therapeutic effects by effectively suppressing tumor growth. Notably, the mechanism by which IRF5 exerts its antitumor function through HLA-E regulation in lung cancer has not been fully elucidated. Here, we identified HLA-E as a downstream target gene of IRF5 and demonstrated that the overexpression of HLA-E can counteract the tumor-promoting effects induced by si-IRF5 M1-exos. These results suggest that M1 macrophage-derived exosomes, enriched with the transcription factor IRF5, exhibit potent antitumor activity by up-regulating HLA-E in lung cancer cells. Therefore, IRF5 M1-exos represent an attractive therapeutic strategy for lung cancer.</p>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/crj.70035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.70035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy is a pivotal approach in the treatment of lung cancer. Although HLA-E is a potential target for tumor immunotherapy, its role in lung cancer remains unclear. Previous studies have identified the transcription factor IRF5 as a characteristic gene of M1-like macrophages, highlighting its crucial role in promoting antitumor immune responses. In this study, we developed an engineered M1-like macrophage exosomes expressing IRF5 (IRF5 M1-exos) and demonstrated their ability to inhibit proliferation, migration, and invasion of lung cancer cells. Moreover, our experiments using a nude mouse model revealed that IRF5 M1-exos exerted potent therapeutic effects by effectively suppressing tumor growth. Notably, the mechanism by which IRF5 exerts its antitumor function through HLA-E regulation in lung cancer has not been fully elucidated. Here, we identified HLA-E as a downstream target gene of IRF5 and demonstrated that the overexpression of HLA-E can counteract the tumor-promoting effects induced by si-IRF5 M1-exos. These results suggest that M1 macrophage-derived exosomes, enriched with the transcription factor IRF5, exhibit potent antitumor activity by up-regulating HLA-E in lung cancer cells. Therefore, IRF5 M1-exos represent an attractive therapeutic strategy for lung cancer.
期刊介绍:
Overview
Effective with the 2016 volume, this journal will be published in an online-only format.
Aims and Scope
The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic.
We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including:
Asthma
Allergy
COPD
Non-invasive ventilation
Sleep related breathing disorders
Interstitial lung diseases
Lung cancer
Clinical genetics
Rhinitis
Airway and lung infection
Epidemiology
Pediatrics
CRJ provides a fast-track service for selected Phase II and Phase III trial studies.
Keywords
Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease,
Abstracting and Indexing Information
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Embase (Elsevier)
Health & Medical Collection (ProQuest)
Health Research Premium Collection (ProQuest)
HEED: Health Economic Evaluations Database (Wiley-Blackwell)
Hospital Premium Collection (ProQuest)
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
ProQuest Central (ProQuest)
Science Citation Index Expanded (Clarivate Analytics)
SCOPUS (Elsevier)