Comprehensive Computational Study on the Influences of Particle Size and Relative Humidity on Aerosol/Droplet Transmission in a Ventilated Room Under Stationary and Dynamic Conditions
IF 4.3 2区 环境科学与生态学Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Sadegh Sadeghi, Saiied M. Aminossadati, Christopher Leonardi
{"title":"Comprehensive Computational Study on the Influences of Particle Size and Relative Humidity on Aerosol/Droplet Transmission in a Ventilated Room Under Stationary and Dynamic Conditions","authors":"Sadegh Sadeghi, Saiied M. Aminossadati, Christopher Leonardi","doi":"10.1155/ina/6039587","DOIUrl":null,"url":null,"abstract":"<p>Given the concerns surrounding the possibility of crosscontamination caused by the airborne transmission of respiratory aerosols (> 5 <i>μ</i>m in diameter) and droplets (> 5 <i>μ</i>m in diameter) containing infectious viruses, there is a great need for simulations that reliably characterize the behaviour of these particles in real-world scenarios. This study performs a comprehensive transient CFD analysis to investigate the transmission of virus-carrying aerosols and droplets released through coughing by a mobile patient within a typical room equipped with a ventilation system. This computational study elaborately examines how particle size and relative humidity impact the dispersion of aerosols and droplets carrying virus in both mobile and stationary conditions of patients. To enhance the accuracy of this study, effective factors such as evaporation of liquid content within aerosols and droplets and random distribution of the particles, along with considerations for buoyancy, drag, lift, Brownian motion, and gravitational forces, are taken into account. To investigate the influence of aerosol and droplet size, this study considers uniform size distributions of 1, 10, and 100 <i>μ</i>m in diameter, comprising 98.2% liquid water and 1.8% solid content. Additionally, different relative humidity levels, 0%, 50%, and 90%, are incorporated to indicate their impact on the dispersion pattern and residence time of the particles in both stationary and dynamic scenarios. According to the results, high levels of relative humidity and individuals’ movement significantly affect the turbulence intensity, airflow pattern, travelling distance, residence time and trajectory of particles, air pressure, and density distributions in such environments.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/6039587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ina/6039587","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the concerns surrounding the possibility of crosscontamination caused by the airborne transmission of respiratory aerosols (> 5 μm in diameter) and droplets (> 5 μm in diameter) containing infectious viruses, there is a great need for simulations that reliably characterize the behaviour of these particles in real-world scenarios. This study performs a comprehensive transient CFD analysis to investigate the transmission of virus-carrying aerosols and droplets released through coughing by a mobile patient within a typical room equipped with a ventilation system. This computational study elaborately examines how particle size and relative humidity impact the dispersion of aerosols and droplets carrying virus in both mobile and stationary conditions of patients. To enhance the accuracy of this study, effective factors such as evaporation of liquid content within aerosols and droplets and random distribution of the particles, along with considerations for buoyancy, drag, lift, Brownian motion, and gravitational forces, are taken into account. To investigate the influence of aerosol and droplet size, this study considers uniform size distributions of 1, 10, and 100 μm in diameter, comprising 98.2% liquid water and 1.8% solid content. Additionally, different relative humidity levels, 0%, 50%, and 90%, are incorporated to indicate their impact on the dispersion pattern and residence time of the particles in both stationary and dynamic scenarios. According to the results, high levels of relative humidity and individuals’ movement significantly affect the turbulence intensity, airflow pattern, travelling distance, residence time and trajectory of particles, air pressure, and density distributions in such environments.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.