Jiarong Lv, Gangji Yi, Xuan Zou, Hongkun Liu, Xiangyu Han, Ling Huang, Hongmei Zeng, Zhien Lin, Guohong Zou
{"title":"Birefringence Disparity Induced by Synergistic Effects of Stereochemically Active Lone Pairs","authors":"Jiarong Lv, Gangji Yi, Xuan Zou, Hongkun Liu, Xiangyu Han, Ling Huang, Hongmei Zeng, Zhien Lin, Guohong Zou","doi":"10.1021/acs.chemmater.4c02887","DOIUrl":null,"url":null,"abstract":"Birefringent crystals with significant optical anisotropy have played a pivotal role in laser technology and scientific research by modulating and controlling light polarization. In this study, we have successfully synthesized three new birefringent materials with mixed-valence antimony, namely, KSb<sub>3</sub>O<sub>6</sub>, RbSb<sub>3</sub>O<sub>6</sub>, and α-Sb<sub>2</sub>O<sub>4</sub>, through the introduction of Sb<sup>3+</sup> with stereochemically active lone pairs (SCALP) to the total oxygen system using a high-temperature solution method. To the best of our knowledge, K/RbSb<sub>3</sub>O<sub>6</sub> represents the first alkali metal mixed-valence Sb-based oxide. Interestingly, despite their similar sandwich structure, these materials exhibit vastly different levels of birefringence (almost 10 times difference). It is worth noting that α-Sb<sub>2</sub>O<sub>4</sub> demonstrates the largest experimental birefringence (0.201 at 546 nm) among non-π-conjugated Sb-based oxides to date, which can be attributed to the synergistic effect of SCALP group distortion and arrangement. These findings hold valuable implications for guiding future efforts in designing and synthesizing large birefringent materials.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"215 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02887","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Birefringent crystals with significant optical anisotropy have played a pivotal role in laser technology and scientific research by modulating and controlling light polarization. In this study, we have successfully synthesized three new birefringent materials with mixed-valence antimony, namely, KSb3O6, RbSb3O6, and α-Sb2O4, through the introduction of Sb3+ with stereochemically active lone pairs (SCALP) to the total oxygen system using a high-temperature solution method. To the best of our knowledge, K/RbSb3O6 represents the first alkali metal mixed-valence Sb-based oxide. Interestingly, despite their similar sandwich structure, these materials exhibit vastly different levels of birefringence (almost 10 times difference). It is worth noting that α-Sb2O4 demonstrates the largest experimental birefringence (0.201 at 546 nm) among non-π-conjugated Sb-based oxides to date, which can be attributed to the synergistic effect of SCALP group distortion and arrangement. These findings hold valuable implications for guiding future efforts in designing and synthesizing large birefringent materials.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.