Dhal Biswabhusan, Puzari Animesh, Li-Hsien Yeh, Kalon Gopinadhan
{"title":"Angstrom Scale Ionic Memristors’ Engineering with van der Waals Materials: A Route to Highly Tunable Memory States","authors":"Dhal Biswabhusan, Puzari Animesh, Li-Hsien Yeh, Kalon Gopinadhan","doi":"10.1021/acsami.4c14521","DOIUrl":null,"url":null,"abstract":"Memristors that mimic brain functions are crucial for energy-efficient neuromorphic devices. Ion channels that emulate biological synapses are still in the early stages of development, especially the tunability of memory states. Here, we demonstrate that cations such as K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, and Al<sup>3+</sup> intercalated in the interlayer spaces of vermiculite result in highly confined channels of size 3–5 Å. They host exotic memristor properties through ion exchange dynamics, even at high salt concentrations of 1 M. The bipolar memristor characteristics observed are tunable with frequency, geometric asymmetry, ion concentration, and intercalants. Notably, we observe polarization-flipping memristor behavior in two cases: one with Al<sup>3+</sup> ions and another with devices having a geometric asymmetry ratio greater than 15. This inversion is attributed to the overscreening of counterions due to their accumulation at the channel entrance. Our results suggest that ion exchange dynamics, ion–ion interactions, and ion accumulation/depletion mechanisms, particularly with multivalent ions, can be harnessed to develop advanced memristor devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"82 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14521","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Memristors that mimic brain functions are crucial for energy-efficient neuromorphic devices. Ion channels that emulate biological synapses are still in the early stages of development, especially the tunability of memory states. Here, we demonstrate that cations such as K+, Na+, Ca2+, and Al3+ intercalated in the interlayer spaces of vermiculite result in highly confined channels of size 3–5 Å. They host exotic memristor properties through ion exchange dynamics, even at high salt concentrations of 1 M. The bipolar memristor characteristics observed are tunable with frequency, geometric asymmetry, ion concentration, and intercalants. Notably, we observe polarization-flipping memristor behavior in two cases: one with Al3+ ions and another with devices having a geometric asymmetry ratio greater than 15. This inversion is attributed to the overscreening of counterions due to their accumulation at the channel entrance. Our results suggest that ion exchange dynamics, ion–ion interactions, and ion accumulation/depletion mechanisms, particularly with multivalent ions, can be harnessed to develop advanced memristor devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.