Equally high efficiencies of organic solar cells processed from different solvents reveal key factors for morphology control

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Rui Zhang, Haiyang Chen, Tonghui Wang, Libor Kobera, Lilin He, Yuting Huang, Junyuan Ding, Ben Zhang, Azzaya Khasbaatar, Sadisha Nanayakkara, Jialei Zheng, Weijie Chen, Ying Diao, Sabina Abbrent, Jiri Brus, Aidan H. Coffey, Chenhui Zhu, Heng Liu, Xinhui Lu, Qing Jiang, Veaceslav Coropceanu, Jean-Luc Brédas, Yongfang Li, Yaowen Li, Feng Gao
{"title":"Equally high efficiencies of organic solar cells processed from different solvents reveal key factors for morphology control","authors":"Rui Zhang, Haiyang Chen, Tonghui Wang, Libor Kobera, Lilin He, Yuting Huang, Junyuan Ding, Ben Zhang, Azzaya Khasbaatar, Sadisha Nanayakkara, Jialei Zheng, Weijie Chen, Ying Diao, Sabina Abbrent, Jiri Brus, Aidan H. Coffey, Chenhui Zhu, Heng Liu, Xinhui Lu, Qing Jiang, Veaceslav Coropceanu, Jean-Luc Brédas, Yongfang Li, Yaowen Li, Feng Gao","doi":"10.1038/s41560-024-01678-5","DOIUrl":null,"url":null,"abstract":"<p>The power conversion efficiency of organic solar cells (OSCs) is exceeding 20%, an advance in which morphology optimization has played a significant role. It is generally accepted that the processing solvent (or solvent mixture) can help optimize morphology, impacting the OSC efficiency. Here we develop OSCs that show strong tolerance to a range of processing solvents, with all devices delivering high power conversion efficiencies around 19%. By investigating the solution states, the film formation dynamics and the characteristics of the processed films both experimentally and computationally, we identify the key factors that control morphology, that is, the interactions between the side chains of the acceptor materials and the solvent as well as the interactions between the donor and acceptor materials. Our work provides new understanding on the long-standing question of morphology control and effective guides to design OSC materials towards practical applications, where green solvents are required for large-scale processing.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"137 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01678-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The power conversion efficiency of organic solar cells (OSCs) is exceeding 20%, an advance in which morphology optimization has played a significant role. It is generally accepted that the processing solvent (or solvent mixture) can help optimize morphology, impacting the OSC efficiency. Here we develop OSCs that show strong tolerance to a range of processing solvents, with all devices delivering high power conversion efficiencies around 19%. By investigating the solution states, the film formation dynamics and the characteristics of the processed films both experimentally and computationally, we identify the key factors that control morphology, that is, the interactions between the side chains of the acceptor materials and the solvent as well as the interactions between the donor and acceptor materials. Our work provides new understanding on the long-standing question of morphology control and effective guides to design OSC materials towards practical applications, where green solvents are required for large-scale processing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信