Multifunctional Fluorescent Probes Unveiling Complex Pathways in Alzheimer’s Disease Pathogenesis

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY
Priyam Ghosh, Parameswar Krishnan Iyer
{"title":"Multifunctional Fluorescent Probes Unveiling Complex Pathways in Alzheimer’s Disease Pathogenesis","authors":"Priyam Ghosh, Parameswar Krishnan Iyer","doi":"10.1021/accountsmr.4c00303","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) is a complex neurological disorder with a progressive nature, posing challenges in diagnosis and treatment. It is characterized by the formation of Aβ plaques and neurofibrillary tangles (NFTs), which have been the focus of clinical diagnosis and treatment. Despite decades of research, the elusive nature of AD has made it difficult to develop widely recognized diagnostic and treatment methods. However, recent advances have led to new diagnostic and therapeutic techniques targeting Aβ and tau. These technologies aim to address gaps in our understanding by targeting biomarkers using multifunctional fluorescent organic-molecule-based theranostics. There is a leading hypothesis that Aβ and its oligomers are crucial pathogenic features in AD-afflicted brains. Metals found in Aβ plaques have been linked to AD, contributing to oxidative stress and stabilizing toxic Aβ oligomers. Drug research is addressing AD’s diverse toxicity, including protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation. Drug development is adopting multifaceted approaches, focusing on the intricate interaction of AD contributors. Diverse diagnostic techniques and innovative drug development tactics are crucial for AD diagnosis and therapy advances.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"214 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is a complex neurological disorder with a progressive nature, posing challenges in diagnosis and treatment. It is characterized by the formation of Aβ plaques and neurofibrillary tangles (NFTs), which have been the focus of clinical diagnosis and treatment. Despite decades of research, the elusive nature of AD has made it difficult to develop widely recognized diagnostic and treatment methods. However, recent advances have led to new diagnostic and therapeutic techniques targeting Aβ and tau. These technologies aim to address gaps in our understanding by targeting biomarkers using multifunctional fluorescent organic-molecule-based theranostics. There is a leading hypothesis that Aβ and its oligomers are crucial pathogenic features in AD-afflicted brains. Metals found in Aβ plaques have been linked to AD, contributing to oxidative stress and stabilizing toxic Aβ oligomers. Drug research is addressing AD’s diverse toxicity, including protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation. Drug development is adopting multifaceted approaches, focusing on the intricate interaction of AD contributors. Diverse diagnostic techniques and innovative drug development tactics are crucial for AD diagnosis and therapy advances.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信