Experimental Insights into Quantum Spin Ice Physics in Dipole–Octupole Pyrochlore Magnets

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
Evan M. Smith, Elsa Lhotel, Sylvain Petit, Bruce D. Gaulin
{"title":"Experimental Insights into Quantum Spin Ice Physics in Dipole–Octupole Pyrochlore Magnets","authors":"Evan M. Smith, Elsa Lhotel, Sylvain Petit, Bruce D. Gaulin","doi":"10.1146/annurev-conmatphys-041124-015101","DOIUrl":null,"url":null,"abstract":"We review a key subset of the experimental studies that have recently focused on cubic pyrochlore magnets whose pseudospin-1<jats:inline-formula> <jats:tex-math>$/$</jats:tex-math> </jats:inline-formula>2 degrees of freedom have mixed dipolar and octupolar character. We discuss how this comes about and how the character of the pseudospin-1<jats:inline-formula> <jats:tex-math>$/$</jats:tex-math> </jats:inline-formula>2 can be experimentally determined. The minimal spin Hamiltonian for such magnetic insulators is known to give rise to a rich phase diagram with both disordered U(1) quantum spin ice (QSI) states and all-in–all-out (AIAO) noncollinear ordered states, each with dipolar and octupolar character. We focus primarily on experimental studies on two such single crystal systems, the <jats:inline-formula> <jats:tex-math>$\\TimesFont{J}$</jats:tex-math> </jats:inline-formula> = 5<jats:inline-formula> <jats:tex-math>$/$</jats:tex-math> </jats:inline-formula>2 Ce<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> and the <jats:inline-formula> <jats:tex-math>$\\TimesFont{J}$</jats:tex-math> </jats:inline-formula> = 9<jats:inline-formula> <jats:tex-math>$/$</jats:tex-math> </jats:inline-formula>2 Nd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub>. We make the case that Ce<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> is an excellent QSI ground-state candidate material, close to the border between QSIs with dipolar and octupolar symmetry. Nd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> exhibits an AIAO ordered phase, featuring an order parameter consisting of dipolar and octupolar magnetic moments. It is found to reside close to a QSI phase boundary and features dynamic fragmentation in its excitation spectrum.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"32 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-041124-015101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We review a key subset of the experimental studies that have recently focused on cubic pyrochlore magnets whose pseudospin-1 $/$ 2 degrees of freedom have mixed dipolar and octupolar character. We discuss how this comes about and how the character of the pseudospin-1 $/$ 2 can be experimentally determined. The minimal spin Hamiltonian for such magnetic insulators is known to give rise to a rich phase diagram with both disordered U(1) quantum spin ice (QSI) states and all-in–all-out (AIAO) noncollinear ordered states, each with dipolar and octupolar character. We focus primarily on experimental studies on two such single crystal systems, the $\TimesFont{J}$ = 5 $/$ 2 Ce2Zr2O7 and the $\TimesFont{J}$ = 9 $/$ 2 Nd2Zr2O7. We make the case that Ce2Zr2O7 is an excellent QSI ground-state candidate material, close to the border between QSIs with dipolar and octupolar symmetry. Nd2Zr2O7 exhibits an AIAO ordered phase, featuring an order parameter consisting of dipolar and octupolar magnetic moments. It is found to reside close to a QSI phase boundary and features dynamic fragmentation in its excitation spectrum.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信