Clifford W. Hicks, Fabian Jerzembeck, Hilary M.L. Noad, Mark E. Barber, Andrew P. Mackenzie
{"title":"Probing Quantum Materials with Uniaxial Stress","authors":"Clifford W. Hicks, Fabian Jerzembeck, Hilary M.L. Noad, Mark E. Barber, Andrew P. Mackenzie","doi":"10.1146/annurev-conmatphys-040521-041041","DOIUrl":null,"url":null,"abstract":"Over the past approximately 10 years, it has become routine to use piezoelectric actuators to apply large anisotropic stresses to correlated electron materials. Elastic strains exceeding 1% can often be achieved, which is sufficient to qualitatively alter the magnetic and/or electronic structures of a wide range of correlated electron materials. Experiments fall into two broad groups. In one, explicit use is made of the capacity of anisotropic stress to reduce the point group symmetry of the lattice, for example, from tetragonal to orthorhombic. In the other, anisotropic stress is used as a more general, powerful tuning method that, within the elastic limit of the material under test, does not introduce disorder. In this review, we provide a brief recent history of strain tuning, describe current methodology, provide selected examples of the types of experiment that have been done, and discuss the thermodynamics of uniaxial stress.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"19 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-040521-041041","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past approximately 10 years, it has become routine to use piezoelectric actuators to apply large anisotropic stresses to correlated electron materials. Elastic strains exceeding 1% can often be achieved, which is sufficient to qualitatively alter the magnetic and/or electronic structures of a wide range of correlated electron materials. Experiments fall into two broad groups. In one, explicit use is made of the capacity of anisotropic stress to reduce the point group symmetry of the lattice, for example, from tetragonal to orthorhombic. In the other, anisotropic stress is used as a more general, powerful tuning method that, within the elastic limit of the material under test, does not introduce disorder. In this review, we provide a brief recent history of strain tuning, describe current methodology, provide selected examples of the types of experiment that have been done, and discuss the thermodynamics of uniaxial stress.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.