Neeraj Dhariwal, Preety Yadav, Manju Kumari, Akanksha, Amit Sanger, Sung Bum Kang, Vinod Kumar, Om Prakash Thakur
{"title":"Engineering an Ultrafast Ambient NO2 Gas Sensor Using Cotton-Modified LaFeO3/MXene Composites","authors":"Neeraj Dhariwal, Preety Yadav, Manju Kumari, Akanksha, Amit Sanger, Sung Bum Kang, Vinod Kumar, Om Prakash Thakur","doi":"10.1021/acssensors.4c02597","DOIUrl":null,"url":null,"abstract":"This work presents a room-temperature (RT) NO<sub>2</sub> gas sensor based on cotton-modified LaFeO<sub>3</sub> (CLFO) combined with MXene. LaFeO<sub>3</sub> (LFO), CLFO, and CLFO/MXene composites were synthesized via a hydrothermal method. The fabricated sensor, utilizing MXene/CLFO, exhibits a p-type behavior and fully recoverable sensing capabilities for low concentrations of NO<sub>2</sub>, achieving a higher response of 14.2 times at 5 ppm. The sensor demonstrates excellent performance with a response time of 2.7 s and a recovery time of 6.2 s, along with notable stability. The sensor’s sensitivity is attributed to gas interactions on the material’s surface, adsorption energy, and charge-transfer mechanisms. Techniques such as in situ FTIR (Fourier transform infrared) spectroscopy, GC–MS (gas chromatography–mass spectroscopy), and near-ambient pressure X-ray photoelectron spectroscopy were employed to verify gas interactions and their byproducts. Additionally, finite-difference time-domain simulations were used to model the electromagnetic field distribution and provide insight into the interaction between NO<sub>2</sub> molecules and the sensor surface at the nanoscale. A prototype wireless IoT (Internet of Things)-based NO<sub>2</sub> gas leakage detection system was also developed, showcasing the sensor’s practical application. This study offers valuable insight into the development of room-temperature NO<sub>2</sub> sensors with a low detection limit.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"21 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02597","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a room-temperature (RT) NO2 gas sensor based on cotton-modified LaFeO3 (CLFO) combined with MXene. LaFeO3 (LFO), CLFO, and CLFO/MXene composites were synthesized via a hydrothermal method. The fabricated sensor, utilizing MXene/CLFO, exhibits a p-type behavior and fully recoverable sensing capabilities for low concentrations of NO2, achieving a higher response of 14.2 times at 5 ppm. The sensor demonstrates excellent performance with a response time of 2.7 s and a recovery time of 6.2 s, along with notable stability. The sensor’s sensitivity is attributed to gas interactions on the material’s surface, adsorption energy, and charge-transfer mechanisms. Techniques such as in situ FTIR (Fourier transform infrared) spectroscopy, GC–MS (gas chromatography–mass spectroscopy), and near-ambient pressure X-ray photoelectron spectroscopy were employed to verify gas interactions and their byproducts. Additionally, finite-difference time-domain simulations were used to model the electromagnetic field distribution and provide insight into the interaction between NO2 molecules and the sensor surface at the nanoscale. A prototype wireless IoT (Internet of Things)-based NO2 gas leakage detection system was also developed, showcasing the sensor’s practical application. This study offers valuable insight into the development of room-temperature NO2 sensors with a low detection limit.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.