Photovoltaic installations are extensively deployed in areas at risk of extremely low production

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Qianzhi Wang, Kai Liu, Wei Xie, Tariq Ali, Jinshan Wu, Ming Wang
{"title":"Photovoltaic installations are extensively deployed in areas at risk of extremely low production","authors":"Qianzhi Wang, Kai Liu, Wei Xie, Tariq Ali, Jinshan Wu, Ming Wang","doi":"10.1038/s43247-024-01932-4","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) installations have rapidly and extensively been deployed worldwide as a promising alternative renewable energy source. However, weather anomalies could expose them to challenges in supply security by causing very low power production. Using reanalysis weather data from 1986 to 2021 and a high-resolution global inventory of PV installations, we assess the impact of extreme low-production (ELP) events across various regions. Our results reveal that regions between 60°N and 60°S experience an average of 27 ELP events annually, with 17% of these events being high-intensity. Regions with dense PV installations—including Southern China, Central and Northern Europe, Central and Eastern America, and Japan—are particularly affected. These areas, which collectively host approximately half of the global PV installations, see 44% of ELP events being high-intensity. Maintaining a daily backup supply equivalent to the average event intensity could recover 39% to 81% of events across different sites. This strategy helps ensure a stable energy supply despite the unpredictability of extreme weather events. Southern China, Central and N Europe, Central and Eastern America, and Japan are areas with dense photovoltaic installations, and they are particularly affected by extremely low production events, according to an analysis that uses weather data and an inventory of photovoltaic installations.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01932-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01932-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic (PV) installations have rapidly and extensively been deployed worldwide as a promising alternative renewable energy source. However, weather anomalies could expose them to challenges in supply security by causing very low power production. Using reanalysis weather data from 1986 to 2021 and a high-resolution global inventory of PV installations, we assess the impact of extreme low-production (ELP) events across various regions. Our results reveal that regions between 60°N and 60°S experience an average of 27 ELP events annually, with 17% of these events being high-intensity. Regions with dense PV installations—including Southern China, Central and Northern Europe, Central and Eastern America, and Japan—are particularly affected. These areas, which collectively host approximately half of the global PV installations, see 44% of ELP events being high-intensity. Maintaining a daily backup supply equivalent to the average event intensity could recover 39% to 81% of events across different sites. This strategy helps ensure a stable energy supply despite the unpredictability of extreme weather events. Southern China, Central and N Europe, Central and Eastern America, and Japan are areas with dense photovoltaic installations, and they are particularly affected by extremely low production events, according to an analysis that uses weather data and an inventory of photovoltaic installations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信