No paleoclimatic anomalies are associated with the late Eocene extraterrestrial impact events

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Bridget S. Wade, Natalie K. Y. Cheng
{"title":"No paleoclimatic anomalies are associated with the late Eocene extraterrestrial impact events","authors":"Bridget S. Wade, Natalie K. Y. Cheng","doi":"10.1038/s43247-024-01874-x","DOIUrl":null,"url":null,"abstract":"Two distinct extraterrestrial impacts events struck the Earth less than 25,000 years apart in the late Eocene, approximately 35.65 million years ago. These resulted in the Popigai (northern Siberia) and Chesapeake Bay (eastern North America) impacts structures, the largest of the Cenozoic era. To examine the paleoclimatic consequences attributed to the late Eocene Chesapeake and Popigai extraterrestrial impact events, we present multispecies planktonic and benthic foraminiferal oxygen (δ18O) and carbon (δ13C) isotope records. Here we generate data from the Gulf of Mexico, Deep Sea Drilling Project Site 94 covering 35.85 to 35.49 million years ago. No isotopic anomalies or excursions were recorded across the impact horizons. However, ~100,000 years before the impacts, a negative 0.75‰ δ18O shift occurs in planktonic foraminifera, coincident with a 0.25‰ positive change in benthic foraminifera. We interpret this as a warming of ~2 °C in the surface ocean, accompanied by 1 °C deep water cooling, but these modifications are before and not coeval with the impact horizons. Despite the close succession of two or more large extraterrestrial impact events within a short space of time (less than 25,000 years), our study from the Gulf of Mexico indicates no detectable paleoclimatic response. Paleoclimatic response was negligible in the Gulf of Mexico despite two or more extraterrestrial impact events occurring approximately 35.65 million years ago, according to stable oxygen and carbon isotope records from planktonic and benthic foraminifer.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-7"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01874-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01874-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two distinct extraterrestrial impacts events struck the Earth less than 25,000 years apart in the late Eocene, approximately 35.65 million years ago. These resulted in the Popigai (northern Siberia) and Chesapeake Bay (eastern North America) impacts structures, the largest of the Cenozoic era. To examine the paleoclimatic consequences attributed to the late Eocene Chesapeake and Popigai extraterrestrial impact events, we present multispecies planktonic and benthic foraminiferal oxygen (δ18O) and carbon (δ13C) isotope records. Here we generate data from the Gulf of Mexico, Deep Sea Drilling Project Site 94 covering 35.85 to 35.49 million years ago. No isotopic anomalies or excursions were recorded across the impact horizons. However, ~100,000 years before the impacts, a negative 0.75‰ δ18O shift occurs in planktonic foraminifera, coincident with a 0.25‰ positive change in benthic foraminifera. We interpret this as a warming of ~2 °C in the surface ocean, accompanied by 1 °C deep water cooling, but these modifications are before and not coeval with the impact horizons. Despite the close succession of two or more large extraterrestrial impact events within a short space of time (less than 25,000 years), our study from the Gulf of Mexico indicates no detectable paleoclimatic response. Paleoclimatic response was negligible in the Gulf of Mexico despite two or more extraterrestrial impact events occurring approximately 35.65 million years ago, according to stable oxygen and carbon isotope records from planktonic and benthic foraminifer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信