Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing

Marco Massarotto, Stefano Saggini, Mirko Loghi, David Esseni
{"title":"Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing","authors":"Marco Massarotto, Stefano Saggini, Mirko Loghi, David Esseni","doi":"10.1038/s44335-024-00013-1","DOIUrl":null,"url":null,"abstract":"In recent years, the in-memory-computing in charge domain has gained significant interest as a promising solution to further enhance the energy efficiency of neuromorphic hardware. In this work, we explore the synergy between the brain-inspired computation and the adiabatic paradigm by presenting an adiabatic Leaky Integrate-and-Fire neuron in 180 nm CMOS technology, that is able to emulate the most important primitives for a valuable neuromorphic computation, such as the accumulation of the incoming input spikes, an exponential leakage of the membrane potential and a tunable refractory period. Differently from previous contributions in the literature, our design can exploit both the charging and recovery phases of the adiabatic operation to ensure a seamless and continuous computation, all the while exchanging energy with the power supply with an efficiency higher than 90% over a wide range of resonance frequencies, and even surpassing 99% for the lowest frequencies. Our simulations unveil a minimum energy per synaptic operation of 470 fJ at a 500 kHz resonance frequency, which yields a 9x energy saving with respect to a non-adiabatic operation.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00013-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00013-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the in-memory-computing in charge domain has gained significant interest as a promising solution to further enhance the energy efficiency of neuromorphic hardware. In this work, we explore the synergy between the brain-inspired computation and the adiabatic paradigm by presenting an adiabatic Leaky Integrate-and-Fire neuron in 180 nm CMOS technology, that is able to emulate the most important primitives for a valuable neuromorphic computation, such as the accumulation of the incoming input spikes, an exponential leakage of the membrane potential and a tunable refractory period. Differently from previous contributions in the literature, our design can exploit both the charging and recovery phases of the adiabatic operation to ensure a seamless and continuous computation, all the while exchanging energy with the power supply with an efficiency higher than 90% over a wide range of resonance frequencies, and even surpassing 99% for the lowest frequencies. Our simulations unveil a minimum energy per synaptic operation of 470 fJ at a 500 kHz resonance frequency, which yields a 9x energy saving with respect to a non-adiabatic operation.

Abstract Image

超低能神经形态计算的绝热泄漏积分和不应期放电神经元
近年来,内存计算控制领域作为进一步提高神经形态硬件能量效率的一种有前途的解决方案而引起了人们的极大兴趣。在这项工作中,我们探索了脑启发计算和绝热范式之间的协同作用,通过在180纳米CMOS技术中提出一个绝热的Leaky集成和发射神经元,该神经元能够模拟有价值的神经形态计算的最重要的原语,如输入尖峰的积累,膜电位的指数泄漏和可调不应期。与以往文献不同的是,我们的设计可以同时利用绝热运行的充电和恢复阶段,以确保计算的无缝和连续,同时在较宽的谐振频率范围内以高于90%的效率与电源交换能量,最低频率甚至超过99%。我们的模拟揭示了在500 kHz共振频率下每个突触操作的最小能量为470 fJ,这与非绝热操作相比节省了9倍的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信