Multi-channel masked autoencoder and comprehensive evaluations for reconstructing 12-lead ECG from arbitrary single-lead ECG

Jiarong Chen, Wanqing Wu, Tong Liu, Shenda Hong
{"title":"Multi-channel masked autoencoder and comprehensive evaluations for reconstructing 12-lead ECG from arbitrary single-lead ECG","authors":"Jiarong Chen, Wanqing Wu, Tong Liu, Shenda Hong","doi":"10.1038/s44325-024-00036-4","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) has emerged as a widely accepted diagnostic instrument for cardiovascular diseases (CVD). The standard clinical 12-lead ECG configuration causes considerable inconvenience and discomfort, while wearable devices offers a more practical alternative. To reduce information gap between 12-lead ECG and single-lead ECG, this study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG, and a comprehensive evaluation benchmark, ECGGenEval, encompass the signal-level, feature-level, and diagnostic-level evaluations. MCMA can achieve the state-of-the-art performance. In the signal-level evaluation, the mean square errors of 0.0175 and 0.0654, Pearson correlation coefficients of 0.7772 and 0.7287. In the feature-level evaluation, the average standard deviation of the mean heart rate across the generated 12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874. In the diagnostic-level evaluation, the average F1-score with two generated 12-lead ECG from different single-lead ECG are 0.8233 and 0.8410.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00036-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00036-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG) has emerged as a widely accepted diagnostic instrument for cardiovascular diseases (CVD). The standard clinical 12-lead ECG configuration causes considerable inconvenience and discomfort, while wearable devices offers a more practical alternative. To reduce information gap between 12-lead ECG and single-lead ECG, this study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG, and a comprehensive evaluation benchmark, ECGGenEval, encompass the signal-level, feature-level, and diagnostic-level evaluations. MCMA can achieve the state-of-the-art performance. In the signal-level evaluation, the mean square errors of 0.0175 and 0.0654, Pearson correlation coefficients of 0.7772 and 0.7287. In the feature-level evaluation, the average standard deviation of the mean heart rate across the generated 12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874. In the diagnostic-level evaluation, the average F1-score with two generated 12-lead ECG from different single-lead ECG are 0.8233 and 0.8410.

Abstract Image

从任意单导联心电图重构12导联心电图的多通道掩码自编码器及综合评价
心电图(ECG)已成为一种被广泛接受的心血管疾病(CVD)诊断工具。标准的临床12导联心电图配置会带来相当大的不便和不适,而可穿戴设备提供了更实用的替代方案。为了缩小12导联心电图与单导联心电图之间的信息差距,本研究提出了一种多通道掩面自编码器(MCMA),用于从任意单导联心电图重构12导联心电图,并提出了一个综合评估基准ECGGenEval,包括信号级、特征级和诊断级评估。MCMA可以达到最先进的性能。在信号水平评价中,均方误差分别为0.0175和0.0654,Pearson相关系数分别为0.7772和0.7287。在特征级评价中,生成的12导联心电图平均心率的平均标准差为1.0481,变异系数为1.58%,极差为3.2874。在诊断水平评价中,不同单导联心电图生成两组12导联心电图的平均f1评分分别为0.8233和0.8410。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信