{"title":"Development and validation of damage and failure models for the design of ceramic matrix composite components","authors":"Thorsten Steinkopff, Roman Keppeler","doi":"10.1111/ijac.14927","DOIUrl":null,"url":null,"abstract":"<p>In this paper, test results for woven ceramic matrix composites (CMCs) based on an oxide matrix and oxide fiber are presented. Stress–strain curves under cyclic loading for different in-plane fiber orientations as well as strength values for different fiber orientations under tension and compression and under pure shear are presented. Based on the experimental data, a nonlinear damage model is derived which allows to determine the progressive degradation of the elastic moduli and the nonelastic remanent strain in a satisfactory manner. It has been implemented into the finite element code ANSYS and shows excellent convergence behavior. To predict the failure of CMC components, the failure mode concept proposed by Cuntze is extended to include friction effects due to tension and compression on the in-plane shear failure mode. The predicted failure onset matches the experimental data very well, whereas existing models like the max-stress or the Tsai–Hill criteria show larger deviations.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14927","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, test results for woven ceramic matrix composites (CMCs) based on an oxide matrix and oxide fiber are presented. Stress–strain curves under cyclic loading for different in-plane fiber orientations as well as strength values for different fiber orientations under tension and compression and under pure shear are presented. Based on the experimental data, a nonlinear damage model is derived which allows to determine the progressive degradation of the elastic moduli and the nonelastic remanent strain in a satisfactory manner. It has been implemented into the finite element code ANSYS and shows excellent convergence behavior. To predict the failure of CMC components, the failure mode concept proposed by Cuntze is extended to include friction effects due to tension and compression on the in-plane shear failure mode. The predicted failure onset matches the experimental data very well, whereas existing models like the max-stress or the Tsai–Hill criteria show larger deviations.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;