{"title":"Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals","authors":"Kangkang Geng, Yunlan Guo, Chao Liu","doi":"10.1111/ijag.16693","DOIUrl":null,"url":null,"abstract":"<p>Transparent glass–ceramics (GCs) with excellent mechanical properties is a growing demand in the field of optoelectronic devices. In this work, Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals embedded transparent GCs were prepared using the melt-quenching method. The effects of the TiO<sub>2</sub> content on the structural and crystallization properties of glass were examined, and the influence of Mg<sub>2</sub>SiO<sub>4</sub> crystallization on the depth of layer (DOL) for K–Na ion-exchange was also investigated. The introduction of TiO<sub>2</sub> was advantageous for the enhanced bulk crystallization of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals within the glass matrix. With an increase in the TiO<sub>2</sub> content, the size of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals decreased, leading to an improvement in the transmittance of the GCs. Crystallization of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals promoted the increase in Vickers hardness and ion-exchange DOL obviously, and the Vickers hardness can further be improved by ion-exchange. Ion-exchange resulted in the transformation of NaAlSiO<sub>4</sub> into KAlSiO<sub>4</sub>. Results reported here are valuable for the design and preparation of GCs with excellent mechanical and ion-exchange properties.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16693","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent glass–ceramics (GCs) with excellent mechanical properties is a growing demand in the field of optoelectronic devices. In this work, Mg2SiO4 nanocrystals embedded transparent GCs were prepared using the melt-quenching method. The effects of the TiO2 content on the structural and crystallization properties of glass were examined, and the influence of Mg2SiO4 crystallization on the depth of layer (DOL) for K–Na ion-exchange was also investigated. The introduction of TiO2 was advantageous for the enhanced bulk crystallization of Mg2SiO4 nanocrystals within the glass matrix. With an increase in the TiO2 content, the size of Mg2SiO4 nanocrystals decreased, leading to an improvement in the transmittance of the GCs. Crystallization of Mg2SiO4 nanocrystals promoted the increase in Vickers hardness and ion-exchange DOL obviously, and the Vickers hardness can further be improved by ion-exchange. Ion-exchange resulted in the transformation of NaAlSiO4 into KAlSiO4. Results reported here are valuable for the design and preparation of GCs with excellent mechanical and ion-exchange properties.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.