Statistical Characteristics of Snowfall on the Tibetan Plateau Affected by TCs Over the Bay of Bengal: An Observational Analysis

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Wei Ye, Ying Li, Yuan Yuan
{"title":"Statistical Characteristics of Snowfall on the Tibetan Plateau Affected by TCs Over the Bay of Bengal: An Observational Analysis","authors":"Wei Ye,&nbsp;Ying Li,&nbsp;Yuan Yuan","doi":"10.1002/joc.8650","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, the characteristics of tropical cyclones (TCs) over the Bay of Bengal (BoB) that affect snowfall on the Tibetan Plateau (TP) and spatiotemporal distribution of snowfall related to BoB TCs are statistically analysed by using multi-sources data from 1981 to 2020, with partitioning TC-influenced snowfall by tracking cloud clusters. The results show that 141 TCs formed during the 40-year period of 1981–2020, of which about 35% (50 TCs) impacted snowfall at 83% of meteorological stations on the TP during their northward or westward movement, and the average distance between the TC centre and the snowfall stations is 1277 km. The proportion of snowfall-related TC frequency shows a significantly decreasing trend with a predominant cycle of 10a. The TC-influenced snowfall frequency (SF), precipitation amount (PA) on a snowfall day and snow depth (SD) during 1981–2020 all show a non-significant weak decreasing trend, while TC-influenced snowfall is significantly increased in the eastern and southern edges of Xizang, western Sichuan and the southern margin of Qinghai. PA and SD in December account for more than 75% and 55% of the monthly total, respectively. The spatial pattern of PA could be objectively categorised into west-type (24%) and southeast-type (76%). The moisture transported by the BoB TC and a southerly jet stream formed between the trough and the western Pacific subtropical high (WPSH), the convergence of cold air and warm–moist airstream over the TP and the change in position of the south Asian high in the upper troposphere are significant factors causing the different spatial distribution. The results can provide reference for TC-related snowfall, SD prediction and disaster assessment on the TP.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 15","pages":"5520-5536"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8650","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the characteristics of tropical cyclones (TCs) over the Bay of Bengal (BoB) that affect snowfall on the Tibetan Plateau (TP) and spatiotemporal distribution of snowfall related to BoB TCs are statistically analysed by using multi-sources data from 1981 to 2020, with partitioning TC-influenced snowfall by tracking cloud clusters. The results show that 141 TCs formed during the 40-year period of 1981–2020, of which about 35% (50 TCs) impacted snowfall at 83% of meteorological stations on the TP during their northward or westward movement, and the average distance between the TC centre and the snowfall stations is 1277 km. The proportion of snowfall-related TC frequency shows a significantly decreasing trend with a predominant cycle of 10a. The TC-influenced snowfall frequency (SF), precipitation amount (PA) on a snowfall day and snow depth (SD) during 1981–2020 all show a non-significant weak decreasing trend, while TC-influenced snowfall is significantly increased in the eastern and southern edges of Xizang, western Sichuan and the southern margin of Qinghai. PA and SD in December account for more than 75% and 55% of the monthly total, respectively. The spatial pattern of PA could be objectively categorised into west-type (24%) and southeast-type (76%). The moisture transported by the BoB TC and a southerly jet stream formed between the trough and the western Pacific subtropical high (WPSH), the convergence of cold air and warm–moist airstream over the TP and the change in position of the south Asian high in the upper troposphere are significant factors causing the different spatial distribution. The results can provide reference for TC-related snowfall, SD prediction and disaster assessment on the TP.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信